题目:传送门
题意
思路
明显的递推式,可以用 BM
其他思路:To
题解思路:
#include <bits/stdc++.h> #define LL long long #define ULL unsigned long long #define UI unsigned int #define mem(i, j) memset(i, j, sizeof(i)) #define rep(i, j, k) for(int i = j; i <= k; i++) #define dep(i, j, k) for(int i = k; i >= j; i--) #define pb push_back #define make make_pair #define INF 0x3f3f3f3f #define inf LLONG_MAX #define PI acos(-1) #define fir first #define sec second #define lb(x) ((x) & (-(x))) #define dbg(x) cout<<#x<<" = "<<x<<endl; using namespace std; typedef vector<int> VI; typedef pair<int, int> PII; const LL mod = 998244353; LL ksm(LL a, LL b) { LL ans = 1; a %= mod; assert(b >= 0); for(; b; b >>= 1) { if(b & 1) ans = ans * a % mod; a = a * a % mod; } return ans; } LL n; const int N = 10010; LL res[N], base[N], _c[N], _md[N]; vector<int> Md; void mul(LL *a, LL *b, int k) { rep(i, 0, k + k - 1) _c[i] = 0; rep(i, 0, k - 1) if(a[i]) rep(j, 0, k - 1) _c[i + j] = (_c[i + j] + a[i] * b[j]) % mod; dep(i, k, k + k - 1) if(_c[i]) rep(j, 0, (int)Md.size() - 1) _c[i - k + Md[j]] = (_c[i - k + Md[j]] - _c[i] * _md[Md[j]]) % mod; rep(i, 0, k - 1) a[i] = _c[i]; } int slove(LL n, VI a, VI b) {/// a 系数 b 初值 b[n+1]=a[0]*b[n]+... LL ans = 0, pnt = 0; int k = a.size(); assert((int)a.size() == (int)b.size()); rep(i, 0, k - 1) _md[k - 1 - i] = -a[i]; _md[k] = 1; Md.clear(); rep(i, 0, k - 1) if(_md[i] != 0) Md.pb(i); rep(i, 0, k - 1) res[i] = base[i] = 0; res[0] = 1; while((1LL << pnt) <= n) pnt++; dep(p, 0, pnt) { mul(res, res, k); if((n >> p) & 1) { dep(i, 0, k - 1) res[i + 1] = res[i]; res[0] = 0; rep(j, 0, (int)Md.size() - 1) res[Md[j]] = (res[Md[j]] - res[k] * _md[Md[j]]) % mod; } } rep(i, 0, k - 1) ans = (ans + res[i] * b[i]) % mod; if(ans < 0) ans += mod; return ans; } VI BM(VI s) { VI C(1, 1), B(1, 1); int L = 0, m = 1, b = 1; rep(n, 0, (int)s.size() - 1) { LL d = 0; rep(i, 0, L) d = (d + (LL)C[i] * s[n - i]) % mod; if(d == 0) ++m; else if(2 * L <= n) { VI T = C; LL c = mod - d * ksm(b, mod - 2) % mod; while((int)C.size() < (int)B.size() + m) C.pb(0); rep(i, 0, (int)B.size() - 1) C[i + m] = (C[i + m] + c * B[i]) % mod; L = n + 1 - L; B = T; b = d; m = 1; } else { LL c = mod - d * ksm(b, mod - 2) % mod; while((int)C.size() < (int)B.size() + m) C.pb(0); rep(i, 0, (int)B.size() - 1) C[i + m] = (C[i + m] + c * B[i]) % mod; ++m; } } return C; } int gao(VI a, LL n) { VI c = BM(a); c.erase(c.begin()); rep(i, 0, (int)c.size() - 1) c[i] = (mod - c[i]) % mod; return slove(n, c, VI(a.begin(), a.begin() + (int)c.size())); } LL F[N], f[N]; int k; int main() { /*push_back 进去前 8~10 项左右、最后调用 gao 得第 n 项*/ vector<int> v; scanf("%lld %d", &n, &k); f[1] = 1; f[2] = 1; F[1] = 1; F[2] = ksm(2, k) + f[1]; v.pb(F[1]); v.pb(F[2]); rep(i, 3, 10000) { f[i] = (f[i - 1] + f[i - 2]) % mod; F[i] = (ksm(i, k) * f[i] % mod + F[i - 1]) % mod; v.pb(F[i]); } printf("%lld ", gao(v, n - 1) % mod); }