zoukankan      html  css  js  c++  java
  • 最长k可重线段集问题【费用流】【优先队列Dijkstra费用流】

    题目链接

      与最长K可重区间问题一样的解法,但是这道题却有很多需要注意的地方,譬如就是精度问题,一开始没考虑到sprt()里面的乘会爆了精度,然后交上去竟然是TLE,然后找的原因方向也没对,最后TLE了好几次,猜想会不会是爆了精度的原因然后交了,A。

      这道题有很多处地方都特别的需要注意,尤其是拆点,还有一定要离散化一下(加速)。不离散化的化,写好一点有概率不T,反正我之前没找到精度问题的时候就是改了离散化。然后这里有一种奇怪的东西,叫做负环,我们在这里需要特别的考虑进去,因为题目中说到的是开线段的个数不大于K,而不是点集“≤K”,所以,我们得去处理这一层关系。拆点,一种特殊的拆点,我们对X区间(x1, x2)去改变成(x1<<1|1, x2<<1)但是有时候像是(5,5)这类的情况,我们又需要特别的再去反转一下x1、x2.

      然后我们拆点完成就可以去跑了,Dijkstra还是SPFA都是可以跑的,Dijkstra快得多而已。

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <string>
    #include <cstring>
    #include <algorithm>
    #include <limits>
    #include <vector>
    #include <stack>
    #include <queue>
    #include <set>
    #include <map>
    #define lowbit(x) ( x&(-x) )
    #define pi 3.141592653589793
    #define e 2.718281828459045
    #define INF 0x3f3f3f3f3f3f3f3f
    #define HalF (l + r)>>1
    #define lsn rt<<1
    #define rsn rt<<1|1
    #define Lson lsn, l, mid
    #define Rson rsn, mid+1, r
    #define QL Lson, ql, qr
    #define QR Rson, ql, qr
    #define myself rt, l, r
    #define MP(x, y) make_pair(x, y)
    using namespace std;
    typedef unsigned long long ull;
    typedef long long ll;
    const int maxN = 1e3 + 7, S = 0;
    int N, K, T, _UP, a[maxN][2];
    ll h[maxN], dist[maxN], lsan[maxN], dis[maxN];
    struct Eddge
    {
        int nex, u, v;
        ll flow, cost;
        Eddge(int a=-1, int b=0, int c=0, ll d=0, ll f=0):nex(a), u(b), v(c), flow(d), cost(f) {}
    };
    vector<Eddge> G[maxN];
    inline void _add(int u, int v, ll flow, ll cost)
    {
        G[u].push_back(Eddge((int)G[v].size(), u, v, flow, cost));
        G[v].push_back(Eddge((int)G[u].size() - 1, v, u, 0, -cost));
    }
    struct node
    {
        int id; ll val;
        node(int a=0, ll b=0):id(a), val(b) {}
        friend bool operator < (node e1, node e2) { return e1.val > e2.val; }
    };
    priority_queue<node> Q;
    int preP[maxN], preE[maxN];
    inline ll MaxFlow_MinCost(ll Flow)
    {
        ll ans = 0;
        for(int i=0; i<=T; i++) h[i] = 0;
        while(Flow)
        {
            for(int i=0; i<=T; i++) dist[i] = INF;
            dist[S] = 0;
            while(!Q.empty()) Q.pop();
            Q.push(node(S, 0));
            while(!Q.empty())
            {
                node now = Q.top(); Q.pop();
                int u = now.id;
                if(dist[u] < now.val) continue;
                int len = (int)G[u].size();
                for(int i=0, v; i<len; i++)
                {
                    v = G[u][i].v; ll f = G[u][i].flow, c = G[u][i].cost;
                    if(f && dist[v] > dist[u] + c - h[v] + h[u])
                    {
                        dist[v] = dist[u] + c - h[v] + h[u];
                        preP[v] = u; preE[v] = i;
                        Q.push(node(v, dist[v]));
                    }
                }
            }
            if(dist[T] == INF) break;
            for(int i=0; i<=T; i++) h[i] += dist[i];
            ll Capa = Flow;
            for(int u=T; u != S; u = preP[u]) Capa = min(Capa, G[preP[u]][preE[u]].flow);
            Flow -= Capa;
            ans += Capa * h[T];
            for(int u = T; u != S; u = preP[u])
            {
                Eddge &E = G[preP[u]][preE[u]];
                E.flow -= Capa;
                G[E.v][E.nex].flow += Capa;
            }
        }
        return -ans;
    }
    inline void init()
    {
        T = _UP + 1;
        //for(int i=0; i<=T; i++) G[i].clear();
    }
    int main()
    {
    //    freopen("employee.in", "r", stdin);
    //    freopen("employee.out", "w", stdout);
        scanf("%d%d", &N, &K);
        _UP = 1;
        for(int i=1, y1, y2; i<=N; i++)
        {
            scanf("%d%d%d%d", &a[i][0], &y1, &a[i][1], &y2);
            dis[i] = sqrt(1LL * (a[i][0] - a[i][1]) * (a[i][0] - a[i][1]) + 1LL * (y1 - y2) * (y1 - y2));
            if(a[i][0] > a[i][1]) swap(a[i][0], a[i][1]);
            a[i][0] = (a[i][0] << 1) | 1; a[i][1] = a[i][1] << 1;
            if(a[i][0] > a[i][1]) swap(a[i][0], a[i][1]);
            lsan[(i<<1) - 1] = a[i][0];
            lsan[i<<1] = a[i][1];
        }
        sort(lsan + 1, lsan + (N<<1) + 1);
        _UP = (int)(unique(lsan + 1, lsan + (N<<1) + 1) - lsan - 1);
        init();
        for(int i=0; i<=_UP; i++) _add(i, i + 1, K, 0);
        for(int i=1, x1, x2; i<=N; i++)
        {
            x1 = (int)(lower_bound(lsan + 1, lsan + _UP + 1, a[i][0]) - lsan);
            x2 = (int)(lower_bound(lsan + 1, lsan + _UP + 1, a[i][1]) - lsan);
            _add(x1, x2, 1, -dis[i]);
        }
        printf("%lld
    ", MaxFlow_MinCost(K));
        return 0;
    }
    View Code
  • 相关阅读:
    小技巧-WEB API第一次加载很慢
    20165313 《Java程序设计》第一周学习总结
    spring-boot源码分析之BeanFactory · 叁
    spring-boot源码分析之BeanFactory · 贰
    aaa
    JavaScript FSO属性大全
    IE浏览器下用JS创建文件
    FileSystemObject详解
    HTTP状态码
    Spring中异步执行方法(@Async)
  • 原文地址:https://www.cnblogs.com/WuliWuliiii/p/11300991.html
Copyright © 2011-2022 走看看