zoukankan      html  css  js  c++  java
  • HDOJ1787 GCD Again[欧拉函数的延伸]

    GCD Again

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1493    Accepted Submission(s): 560


    Problem Description
    Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
    No? Oh, you must do this when you want to become a "Big Cattle".
    Now you will find that this problem is so familiar:
    The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem:
    Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
    This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
    Good Luck!
     
    Input
    Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
     
    Output
    For each integers N you should output the number of integers M in one line, and with one line of output for each line in input.
     
    Sample Input
    2 4 0
     
    Sample Output
    0 1
     
    Author
    lcy
     
    Source
     
    Recommend
    lcy
     
     
     
     
     
    算是个欧拉函数的延伸吧!
    code:
     1 #include <iostream>   
     2 #include <iomanip>   
     3 #include <fstream>   
     4 #include <sstream>   
     5 #include <algorithm>   
     6 #include <string>   
     7 #include <set>   
     8 #include <utility>   
     9 #include <queue>   
    10 #include <stack>   
    11 #include <list>   
    12 #include <vector>   
    13 #include <cstdio>   
    14 #include <cstdlib>   
    15 #include <cstring>   
    16 #include <cmath>   
    17 #include <ctime>   
    18 #include <ctype.h> 
    19 using namespace std;
    20 
    21 int main()
    22 {
    23     int n;
    24     int m;
    25     int temp;
    26     while(~scanf("%d",&n),n)
    27     {
    28         if(n==2||n==3)
    29         {
    30             printf("0\n");
    31             continue;
    32         }
    33         temp=m=n;
    34         int i;
    35         for(i=2;i<=sqrt(double(n));i++)
    36         {
    37             if(!(temp%i))
    38             {
    39                 m=m/(i)*(i-1);
    40                 while(!(temp%i))
    41                     temp/=i;
    42             }
    43         }
    44         if(temp!=1)                 //没除尽的情况
    45             m=m/(temp)*(temp-1);
    46         if(m==n)
    47             printf("0\n");
    48         else
    49             printf("%d\n",n-m-1);
    50     }
    51     return 0;
    52 }
  • 相关阅读:
    TypeConverter的使用
    ASP.NET MVC——Controller的激活
    ASP.NET 会话状态的模式
    ASP.NET页面生命周期描述
    一个字符串搜索的Aho-Corasick算法
    ILMerge 简单使用
    js css优化-- 合并和压缩
    C#.Net网页加载等待效果漂亮并且简单
    获取打开文件的路径和文件名
    C#程序中:如何启用进程、结束进程、查找进程
  • 原文地址:https://www.cnblogs.com/XBWer/p/2634164.html
Copyright © 2011-2022 走看看