zoukankan      html  css  js  c++  java
  • HDOJ1787 GCD Again[欧拉函数的延伸]

    GCD Again

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1493    Accepted Submission(s): 560


    Problem Description
    Do you have spent some time to think and try to solve those unsolved problem after one ACM contest?
    No? Oh, you must do this when you want to become a "Big Cattle".
    Now you will find that this problem is so familiar:
    The greatest common divisor GCD (a, b) of two positive integers a and b, sometimes written (a, b), is the largest divisor common to a and b. For example, (1, 2) =1, (12, 18) =6. (a, b) can be easily found by the Euclidean algorithm. Now I am considering a little more difficult problem:
    Given an integer N, please count the number of the integers M (0<M<N) which satisfies (N,M)>1.
    This is a simple version of problem “GCD” which you have done in a contest recently,so I name this problem “GCD Again”.If you cannot solve it still,please take a good think about your method of study.
    Good Luck!
     
    Input
    Input contains multiple test cases. Each test case contains an integers N (1<N<100000000). A test case containing 0 terminates the input and this test case is not to be processed.
     
    Output
    For each integers N you should output the number of integers M in one line, and with one line of output for each line in input.
     
    Sample Input
    2 4 0
     
    Sample Output
    0 1
     
    Author
    lcy
     
    Source
     
    Recommend
    lcy
     
     
     
     
     
    算是个欧拉函数的延伸吧!
    code:
     1 #include <iostream>   
     2 #include <iomanip>   
     3 #include <fstream>   
     4 #include <sstream>   
     5 #include <algorithm>   
     6 #include <string>   
     7 #include <set>   
     8 #include <utility>   
     9 #include <queue>   
    10 #include <stack>   
    11 #include <list>   
    12 #include <vector>   
    13 #include <cstdio>   
    14 #include <cstdlib>   
    15 #include <cstring>   
    16 #include <cmath>   
    17 #include <ctime>   
    18 #include <ctype.h> 
    19 using namespace std;
    20 
    21 int main()
    22 {
    23     int n;
    24     int m;
    25     int temp;
    26     while(~scanf("%d",&n),n)
    27     {
    28         if(n==2||n==3)
    29         {
    30             printf("0\n");
    31             continue;
    32         }
    33         temp=m=n;
    34         int i;
    35         for(i=2;i<=sqrt(double(n));i++)
    36         {
    37             if(!(temp%i))
    38             {
    39                 m=m/(i)*(i-1);
    40                 while(!(temp%i))
    41                     temp/=i;
    42             }
    43         }
    44         if(temp!=1)                 //没除尽的情况
    45             m=m/(temp)*(temp-1);
    46         if(m==n)
    47             printf("0\n");
    48         else
    49             printf("%d\n",n-m-1);
    50     }
    51     return 0;
    52 }
  • 相关阅读:
    BZOJ3498PA2009 Cakes——三元环
    黑科技之三元环讲解
    BZOJ4317Atm的树&BZOJ2051A Problem For Fun&BZOJ2117[2010国家集训队]Crash的旅游计划——二分答案+动态点分治(点分树套线段树/点分树+vector)
    BZOJ2463[中山市选2009]谁能赢呢?——博弈论
    BZOJ2275[Coci2010]HRPA——斐波那契博弈
    BZOJ2281[Sdoi2011]黑白棋&BZOJ4550小奇的博弈——DP+nimk游戏
    BZOJ3435[Wc2014]紫荆花之恋——动态点分治(替罪羊式点分树套替罪羊树)
    Trie树学习总结
    kmp学习小结
    Hash学习小结
  • 原文地址:https://www.cnblogs.com/XBWer/p/2634164.html
Copyright © 2011-2022 走看看