zoukankan      html  css  js  c++  java
  • Topology and Geometry Seminar

    Slides: https://github.com/CubicBear/GeoTop

    Here are the slides of the seminars about topology and geometry. The topics are selected to be more relative to representation theory (but it, unfortunately, ended in the middle so the representation part has no chance to be reflected). But anyway, I thought this would be an introductory resource to the geometry of fiber bundles. 


    Tips: the lectures with (I) are more important than the one with (II). 

    Appendix: the topics in the plan and in the imagination


    Lecture 1 to Lecture 7

    Time: each Friday, 

    > 20:00-21:30, chat from 19:30 (Beijing, UTC+8) 

    > 15:00-16:30, chat from 14:30 (Moscow, UTC+3) 

    Tencent Meeting765 3760 2473 (QR code)

    Lecture 1 Spectral Sequences (I)

    Slide(TopGeo)Lecture1.pdf 

    Date: 2020/9/18 

    Introduction
    Filtered complexes
    Leray-Serre Spectral Sequences
    Applications
    

    The reflection of the first lecture is not that good, so I plan to change a little the style of lecturing. 

    Lecture 2 Spectral Sequences (II)

    Slide(TopGeo)Lecture2(1).pdf 

     

    Date: 2020/09/25 19:30-21:30 (Beijing, UTC+8) 14:30-16:30 (Moscow, UTC+3) 

    Remind
    Double complexes
    v{C}ech cohomology
    Grothendieck Spectral Sequences
    Applications
    

    Maybe this time is better. Purely reading the slide makes perfect. 

    Lecture 3 Characteristic Classes (I) 

    Slide(TopGeo)Lecture3(3).pdf

     

    Date: 2020/10/02

    Vector Bundles
    Classifying Vector Bundles
    Chern Classes
    

    There is some possibility that next time, some of the proof details will be omitted. 

    Lecture 4 Characteristic Classes (II)

    Slide(TopGeo)Lecture4(3).pdf

    Date: 2020/10/09

    I will also simultaneously make one on skype if there will be some foreigners (I suggest to write to me if you are)

    Axioms of Chern Classes
    Chern Classes in Differential Geomtry
    Chern Classes in Algebraic Geometry
    General Characteristic Classes
    Vector Bundles over Spheres

    There is some problem with the slide, which is described at the beginning of the uploaded one. I will make a new one later. (It is uploaded)

    Lecture 5 K-theory (I)

    Slides(TopGeo)Lecture5(2).pdf

    Date: 2020/10/16

    Definitions
    Bott Periodicity
    Chern Character
    Thom isomorphisms
    Atiyah--Hirzebruch Spectral Sequences
    

    Lecture 6 K-theory (II)

    Slide(TopGeo)Lecture6.pdf 

    Date: 2020/10/23

    K in Algebra
    K in Analysis
    K in Algebraic Geometry
    Higher K
    

    Lecture 7 Computations

    Slides: (TopGeo)Lecture7(2).pdf

    Date: 2020/10/30

    Trivial Bundles
    Spheres
    Projective Spaces
    Determinant
    Curves
    Classifying Spaces
    Flag Manifolds
    Grassmannians
    Classifying Spaces
    Flag Manifolds
    Grassmannians
    

    In this lecture, the role of the spectral sequence is reflected. 

    References

    Note that the separated references are given at the end of each slide. Here are some general references. 

    Benson. Cohomology and Representation, second volume.
    May. A Concise Course in Algebraic Topology. 
    Bott, Tu. Differential Forms in Algebraic Topology. GTM82. 
    Broden. Topology and Geometry. GTM129. 
    Husemoller. Fibre Bundles.GTM20. 
    Fomenko, Fuchs. Homotopy Topology. GTM273. 
    Milnor, Stasheff. Characteristic classes. 
    Atiyah. K theory.

    The first 7 lectures above are the basic part of our seminar. The lectures later will be more introductory with less proof. 

    News: no more. It finished. 


    Lecture 8 Equivariant Version (I)

    Slides(TopGeo)Lecture8(2).pdf

    Record: Equivariant Version (I)

    Date: 2020/11/14

    Time: 18:00-20:00 (Beijing, UTC+8) 13:00-15:00, chat from 14:30 (Moscow, UTC+3) 

    Tencent Meeting457 796 895 (QR code)

    Equivariant Cohomology
    Spectral Sequences
    Fundamental Classes
    Other Forms
    Equivariant K-theory
    Other forms
    

    Ref: 

    Goresky, Kottwitz, and Macpherson. Equivariant cohomology, Koszul duality, and the localization theorem.

    Xiong. Comodule Structures, Equivariant Hopf Structures, and Generalized Schubert Polynomials. [arXiv

    Fulton. Young Tableaux with Application in Algebra and Geometry. 

    Guillemin, Sternberg, Brüning, Supersymmetry, and Equivariant de Rham Theory.

    Deligne. Théorie de Hodge, III. 

    Bernstein and Lunts. Equivariant sheaves and functors. 

    Segal. Equivariant K-theory. 

    Atiyah. Equivalent K theory and Completion. 

    Chriss, Ginzburg. Representation Theory and Complex Geometry.

    Lecture 9 Equivariant Version (II)

    Slides: (TopGeo)Lecture9.pdf

    Record: Equivariant Version (II) (it sucks)

    Fixed Points and Tori
    Localization Theorem (I)
    Localization Theorem (II)
    Localization Theorem (III)
    Localization Theorem (IV)
    Localization Theorem (V) 

    Ref: 

    Milne. Algebraic Groups.

    Hsiang. Cohomology Theory of Topological Transformation Groups.

    Chriss, Ginzburg. Representation Theory and Complex Geometry. (essentially, Thom's papers)

    Goresky, Kottwitz, and MacPherson. Equivariant cohomology, Koszul duality, and the localization theorem.

    Jantzen. Moment graphs and representations.

    Kaji. Three presentations of torus equivariant cohomology of flag manifolds. [arXiv

    Lecture 10 Sheaf Theory (I)

    Slides: (TopGeo)Lecture10(2).pdf (also Github)

    Time: Nov 28th, 18:00-21:00 (Beijing, UTC+8)

    Tencent Meeting: 615 4671 9597

    Sheaves
    Morphisms
    Examples
    Functors
    Examples
    

    No references 

    Lecture 11 Sheaf Theory (II)

    Slides: (TopGeo)Lecture11(2).pdf (also Github)

    Time: 2020/12/4 19:00-22:00

    Tencent Meeting: 986 409 538

    Homological Algebra
    Realization of Topology (I)
    Homological Algebra (II)
    Realization of Topology (II)
    

    References: 

    Verdier. Dualité dans la cohomologie des espaces localement compacts. [pdf]

    Borel, Moore. Homology theory for locally compact spaces. [pdf]

    Lecture 12 Intersection Homology and Perverse Sheaves (I)

    Kirwan, Woolf, An introduction to intersection homology.

    Goresky, MacPherson. Intersection homology I. [pdf]

    Brasselet. A walk in the world of perverse sheaves. Lecture 1 [Youtube], Lecture 2 [Youtube], Lecture 3 [Youtube]. 

    Lecture 13 Intersection Homology and Perverse Sheaves (II)

    Goresky, MacPherson. Intersection homology II. [pdf]

    MacPherson. Intersection cohomology and Perverse Sheaves. [pdf]

    Ginzburg. Geometric methods in the representation theory of Hecke algebras and quantum groups. [arXiv]

    Hotta, Takeuchi, Tanisaki. D-Modules, Perverse Sheaves, and Representation Theory. 

    Etingof. Introduction to Algebraic $mathcal{D}$-module. [pdf]

    Kirwan, Woolf, An introduction to intersection homology. 

    Lecture 14 $mathcal{D}$-modules (I)

    Lecture 15 $mathcal{D}$-modules (II)

    See my note: DModules.pdf


    Gallary

     

     

     

  • 相关阅读:
    数据库访问抽象基础类
    c#编码规范
    Ckeditor通过Ajax更新数据
    test
    能用钱解决的,绝不要花时间 过来人的11条人生经验
    关于servlet的一些学习总结
    java 实现群发邮件
    WEB前端性能优化
    用友u8各版本在输出的时候报错提示:外部数据库驱动程序(1)中的意外错误
    Winform入门见解
  • 原文地址:https://www.cnblogs.com/XiongRuiMath/p/13679974.html
Copyright © 2011-2022 走看看