链接:
https://vjudge.net/problem/HDU-3062
题意:
有n对夫妻被邀请参加一个聚会,因为场地的问题,每对夫妻中只有1人可以列席。在2n 个人中,某些人之间有着很大的矛盾(当然夫妻之间是没有矛盾的),有矛盾的2个人是不会同时出现在聚会上的。有没有可能会有n 个人同时列席?
思路:
2-SAT模板,考虑两个不能同时存在的夫妻,他们的对象可以同时存在,加到边上。
训练指南的模板
tarjan模板,
把所有必需的边连上,缩点,如果某个夫妻再同一个强联通分量内,就不能满足
代码:
//#include<bits/stdc++.h>
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<string.h>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<math.h>
#include<stdio.h>
#include<map>
#include<stack>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int MOD = 20071027;
const int MAXN = 1e3+10;
int Next[4][2] = {-1, 0, 0, 1, 1, 0, 0, -1};
struct TwoSAT
{
int n;
vector<int> G[MAXN*2];
bool mark[MAXN*2];
int S[MAXN*2], c;
bool dfs(int x)
{
if (mark[x^1]) return false;
if (mark[x]) return true;
mark[x] = true;
S[c++] = x;
for (int i = 0;i < (int)G[x].size();i++)
if (!dfs(G[x][i])) return false;
return true;
}
void init(int n)
{
this->n = n;
for (int i = 0;i < 2*n;i++)
G[i].clear();
memset(mark, 0, sizeof(mark));
}
void add_clause(int x, int xval, int y, int yval)
{
// x = xval or y = yval
x = x*2+xval;
y = y*2+yval;
G[x^1].push_back(y);
G[y^1].push_back(x);
}
bool solve()
{
for (int i = 0;i < n*2;i += 2)
{
if (!mark[i] && !mark[i^1])
{
c = 0;
if (!dfs(i))
{
while(c > 0) mark[S[--c]] = false;
if (!dfs(i^1)) return false;
}
}
}
return true;
}
}sat;
int main()
{
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int n, m;
while(cin >> n >> m)
{
sat.init(n);
int x1, x2, y1, y2;
for (int i = 1;i <= m;i++)
{
cin >> x1 >> x2 >> y1 >> y2;
sat.add_clause(x1, y1^1, x2, y2^1);
}
if (sat.solve())
cout << "YES" << endl;
else
cout << "NO" << endl;
}
return 0;
}
tarjan算法模板
//tarjan
//#include<bits/stdc++.h>
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<string.h>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<math.h>
#include<stdio.h>
#include<map>
#include<stack>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int MOD = 20071027;
const int MAXN = 1e3+10;
int Next[4][2] = {-1, 0, 0, 1, 1, 0, 0, -1};
vector<int> G[MAXN*2];
stack<int> St;
int dfn[MAXN*2], low[MAXN*2], sccnum[MAXN*2];
int dfn_clock, scc_cnt;
int n, m;
void tarjan(int u)
{
dfn[u] = low[u] = ++dfn_clock;
St.push(u);
for (int i = 0;i < (int)G[u].size();i++)
{
int v = G[u][i];
if (!dfn[v])
{
tarjan(v);
low[u] = min(low[v], low[u]);
}
else if (!sccnum[v])
low[u] = min(dfn[v], low[u]);
}
if (low[u] == dfn[u])
{
++scc_cnt;
while(true)
{
int x = St.top();
St.pop();
sccnum[x] = scc_cnt;
if (x == u)
break;
}
}
}
bool solve()
{
memset(dfn, 0, sizeof(dfn));
memset(low, 0, sizeof(low));
memset(sccnum, 0, sizeof(sccnum));
dfn_clock = scc_cnt = 0;
for (int i = 0;i < 2*n;i++)
if (!dfn[i]) tarjan(i);
for (int i = 0;i < 2*n;i+=2)
if (sccnum[i] == sccnum[i+1]) return false;
return true;
}
void add_edge(int x, int xval, int y, int yval)
{
x = x*2+xval;
y = y*2+yval;
G[x^1].push_back(y);
G[y^1].push_back(x);
}
void init()
{
for (int i = 0;i < 2*n;i++)
G[i].clear();
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
while(cin >> n >> m)
{
init();
int x1, x2, y1, y2;
for (int i = 1;i <= m;i++)
{
cin >> x1 >> x2 >> y1 >> y2;
add_edge(x1, y1^1, x2, y2^1);
}
if (solve())
cout << "YES" << endl;
else
cout << "NO" << endl;
}
return 0;
}