zoukankan      html  css  js  c++  java
  • 中国剩余定理

    以下为ZYT的博客(http://www.cnblogs.com/MashiroSky/p/5918158.html)

    注明:ZYT是偶好朋友,不然也不会蒯(但我今天遇到了不好的事 http://www.cnblogs.com/YJinpeng/p/5992717.html)

             写得很好,受教了


    先看一道poj上的题目:【poj1006】 Biorhythms

    题意:

      人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天。一个周期内有一天为峰值,在这一天,人在对应的方面(体力,情感或智力)表现最好。通常这三个周期的峰值不会是同一天。现在给出三个日期,分别对应于体力,情感,智力出现峰值的日期。然后再给出一个起始日期,要求从这一天开始,算出最少再过多少天后三个峰值同时出现。

    分析:

      首先我们要知道,任意两个峰值之间一定相距整数倍的周期。假设一年的第N天达到峰值,则下次达到峰值的时间为N+Tk(T是周期,k是任意正整数)。所以,三个峰值同时出现的那一天(S)应满足

      S = N1 + T1*k1 = N2 + T2*k2 = N3 + T3*k3

      N1,N2,N3分别为为体力,情感,智力出现峰值的日期, T1,T2,T3分别为体力,情感,智力周期。 我们需要求出k1,k2,k3三个非负整数使上面的等式成立。

      想直接求出k1,k2,k3貌似很难,但是我们的目的是求出S, 可以考虑从结果逆推。根据上面的等式,S满足三个要求:除以T1余数为N1,除以T2余数为N2,除以T3余数为N3。这样我们就把问题转化为求一个最小数,该数除以T1余N1,除以T2余N2,除以T3余N3。这就是著名的中国剩余定理,我们的老祖宗在几千年前已经对这个问题想出了一个精妙的解法。依据此解法的算法,时间复杂度可达到O(1)。


    中国剩余定理:

      在《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),七七数之剩二(除以7余2),问物几何?”这个问题称为“孙子问题”,该问题的一般解法国际上称为“中国剩余定理”。具体解法分三步:

      1. 找出三个数:从3和5的公倍数中找出被7除余1的最小数15,从3和7的公倍数中找出被5除余1 的最小数21,最后从5和7的公倍数中找出除3余1的最小数70。
      2. 用15乘以2(2为最终结果除以7的余数),用21乘以3(3为最终结果除以5的余数),同理,用70乘以2(2为最终结果除以3的余数),然后把三个乘积相加(15*2+21*3+70*2)得到和233。
      3. 用233除以3,5,7三个数的最小公倍数105,得到余数23,即233%105=23。这个余数23就是符合条件的最小数。

      就这么简单。我们在感叹神奇的同时不禁想知道古人是如何想到这个方法的,有什么基本的数学依据吗?

      我们将“孙子问题”拆分成几个简单的小问题,从零开始,试图揣测古人是如何推导出这个解法的。

      首先,我们假设n1是满足除以3余2的一个数,比如2,5,8等等,也就是满足3*k+2(k>=0)的一个任意数。同样,我们假设n2是满足除以5余3的一个数,n3是满足除以7余2的一个数。

      有了前面的假设,我们先从n1这个角度出发,已知n1满足除以3余2,能不能使得 n1+n2 的和仍然满足除以3余2?进而使得n1+n2+n3的和仍然满足除以3余2?

      这就牵涉到一个最基本数学定理,如果有a%b=c,则有(a+kb)%b=c(k为非零整数),换句话说,如果一个除法运算的余数为c,那么被除数与k倍的除数相加(或相减)的和(差)再与除数相除,余数不变。这个是很好证明的。

      以此定理为依据,如果n2是3的倍数,n1+n2就依然满足除以3余2。同理,如果n3也是3的倍数,那么n1+n2+n3的和就满足除以3余2。这是从n1的角度考虑的,再从n2,n3的角度出发,我们可推导出以下三点:

      1. 为使n1+n2+n3的和满足除以3余2,n2和n3必须是3的倍数。
      2. 为使n1+n2+n3的和满足除以5余3,n1和n3必须是5的倍数。
      3. 为使n1+n2+n3的和满足除以7余2,n1和n2必须是7的倍数。

      因此,为使n1+n2+n3的和作为“孙子问题”的一个最终解,需满足:

      1. n1除以3余2,且是5和7的公倍数。
      2. n2除以5余3,且是3和7的公倍数。
      3. n3除以7余2,且是3和5的公倍数。

      所以,孙子问题解法的本质是从5和7的公倍数中找一个除以3余2的数n1,从3和7的公倍数中找一个除以5余3的数n2,从3和5的公倍数中找一个除以7余2的数n3,再将三个数相加得到解。在求n1,n2,n3时又用了一个小技巧,以n1为例,并非从5和7的公倍数中直接找一个除以3余2的数,而是先找一个除以3余1的数,再乘以2。也就是先求出5和7的公倍数模3下的逆元,再用逆元去乘余数。

      这里又有一个数学公式,如果a%b=c,那么(a*k)%b=a%b+a%b+…+a%b=c+c+…+c=kc(k>0),也就是说,如果一个除法的余数为c,那么被除数的k倍与除数相除的余数为kc。展开式中已证明。

      最后,我们还要清楚一点,n1+n2+n3只是问题的一个解,并不是最小的解。如何得到最小解?我们只需要从中最大限度的减掉掉3,5,7的公倍数105即可。道理就是前面讲过的定理“如果a%b=c,则有(a-kb)%b=c”。所以(n1+n2+n3)%105就是最终的最小解。

      这样一来就得到了中国剩余定理的公式:

    设正整数两两互素,则同余方程组

                                 

    有整数解。并且在模下的解是唯一的,解为

                                   

    其中,而的逆元。


    中国剩余定理扩展——求解模数不互质情况下的线性方程组:

      普通的中国剩余定理要求所有的互素,那么如果不互素呢,怎么求解同余方程组?

      这种情况就采用两两合并的思想,假设要合并如下两个方程:

      那么得到:

      我们需要求出一个最小的x使它满足:

      那么x1和x2就要尽可能的小,于是我们用扩展欧几里得算法求出x1的最小正整数解,将它代回a1+m1x1,得到x的一个特解x',当然也是最小正整数解。

      所以x的通解一定是x'加上lcm(m1,m2)*k,这样才能保证x模m1和m2的余数是a1和a2。由此,我们把这个x'当做新的方程的余数,把lcm(m1,m2)当做新的方程的模数。合并完成:


    参考资料:

    http://www.cnblogs.com/walker01/archive/2010/01/23/1654880.html

    http://blog.csdn.net/acdreamers/article/details/8050018

  • 相关阅读:
    Connection parameters are correct , SSL not enabled
    log4j配置文件的详解
    java.lang.IllegalArgumentException: addChild: Child name '/SSHE' is not unique
    MYSQL的三种注释
    Oracle19c 单节点ASM 存储模式数据库实例搭建过程
    [专题]中立遭质疑,提价遭反对,ARM的生存难题怎么破?
    快速排序的理解
    chrome审查元素功能,web开发强大帮手
    MyEclipse Server view报错解决方法
    把Java程序打包成jar文件包并执行
  • 原文地址:https://www.cnblogs.com/YJinpeng/p/5992771.html
Copyright © 2011-2022 走看看