zoukankan      html  css  js  c++  java
  • Phalanx (hdu 2859)

     
     

     

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 996    Accepted Submission(s): 468


    Problem Description
    Today is army day, but the servicemen are busy with the phalanx for the celebration of the 60th anniversary of the PRC.
    A phalanx is a matrix of size n*n, each element is a character (a~z or A~Z), standing for the military branch of the servicemen on that position.
    For some special requirement it has to find out the size of the max symmetrical sub-array. And with no doubt, the Central Military Committee gave this task to ALPCs.
    A symmetrical matrix is such a matrix that it is symmetrical by the “left-down to right-up” line. The element on the corresponding place should be the same. For example, here is a 3*3 symmetrical matrix:
    cbx
    cpb
    zcc
     

    Input
    There are several test cases in the input file. Each case starts with an integer n (0<n<=1000), followed by n lines which has n character. There won’t be any blank spaces between characters or the end of line. The input file is ended with a 0.
     

    Output
    Each test case output one line, the size of the maximum symmetrical sub- matrix.
     

    Sample Input
    3 abx cyb zca 4 zaba cbab abbc cacq 0
     

    Sample Output
    3 3
     

    Source

     

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <cmath>
    #include <vector>
    #include <algorithm>
    #include <string>
    using namespace std;
    
    #define N 1100
    #define MOD 1000000007
    #define met(a, b) memset(a, b, sizeof(a))
    #define INF 0x3f3f3f3f
    
    char G[N][N];
    int dp[N][N];
    
    int main()
    {
        int n;
    
        while(scanf("%d", &n), n)
        {
            int i, j, i1, j1, Max=1;
    
            met(G, 0);
            met(dp, 0);
            for(i=0; i<n; i++)
                scanf("%s", G[i]);
    
            for(i=0; i<n; i++)
            for(j=0; j<n; j++)
            {
                if(i==0 || j==n-1)
                {
                    dp[i][j] = 1;
                    continue;
                }
                i1=i, j1=j;
                while(j1<n && i1>=0 && G[i1][j]==G[i][j1] )
                     i1--, j1++;
    
                if((i-i1)>=dp[i-1][j+1]+1) dp[i][j] = dp[i-1][j+1] + 1;
                else dp[i][j] = i-i1;
    
                Max = max(Max, dp[i][j]);
            }
    
            printf("%d
    ", Max);
        }
        return 0;
    }
  • 相关阅读:
    带下拉子菜单的导航菜单
    如何使用myFocus插件制作焦点图效果
    将博客搬至CSDN
    《转》二进制与三进制的那些趣题
    二叉树遍历 (前序 层次 == 深度 广度) 层次遍历
    数组全排列 knuth 分解质因数
    堆排序
    双向快速排序
    二路归并排序
    字符串的排列
  • 原文地址:https://www.cnblogs.com/YY56/p/5456471.html
Copyright © 2011-2022 走看看