zoukankan      html  css  js  c++  java
  • 6609

    https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4620

     

     

    You are given an integer sequence of length N and another value X. You have to find a contiguous
    subsequence of the given sequence such that the sum is greater or equal to X. And you have to find
    that segment with minimal length.
    Input
    First line of the input file contains T the number of test cases. Each test case starts with a line
    containing 2 integers N (1 ≤ N ≤ 500000) and X (−109 ≤ X ≤ 109
    ). Next line contains N integers
    denoting the elements of the sequence. These integers will be between −109
    to 109
    inclusive.
    Output
    For each test case output the minimum length of the sub array whose sum is greater or equal to X. If
    there is no such array, output ‘-1’.
    Sample Input
    3
    5 4
    1 2 1 2 1
    6 -2
    -5 -6 -7 -8 -9 -10
    5 3
    -1 1 1 1 -1
    Sample Output
    3
    -1
    3

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <queue>
    #include <vector>
    #include <map>
    #include <algorithm>
    using namespace std;
    
    const int N = 510000;
    const int INF = 0x3fffffff;
    typedef long long LL;
    #define met(a,b) (memset(a,b,sizeof(a)))
    
    struct node
    {
        LL x;
        int Start;
    } sum[N];
    
    LL a[N];
    
    int main()
    {
        int T;
        scanf("%d", &T);
        while(T--)
        {
            int n, i, Min=N, X, Start;
            LL x;
    
            met(a, 0);
            met(sum, 0);
    
            scanf("%d%lld", &n, &x);
    
            for(i=1; i<=n; i++)
                scanf("%lld", &a[i]);
    
            for(i=1; i<=n; i++)
            {
                if(sum[i-1].x<=0 || i==1)
                {
                    sum[i].x = a[i];
                    sum[i].Start = i;
                }
                else
                {
                    sum[i].x = sum[i-1].x + a[i];
                    sum[i].Start = sum[i-1].Start;
                }
                if(sum[i].x>=x)
                {
                    Min = min(Min, i-sum[i].Start+1);
                    X = sum[i].x, Start = sum[i].Start;
                    while(X>=0 && Start<=i)
                    {
                        X -= a[Start];
                        Start++;
                        if(X >= x)
                        {
                            sum[i].x = X;
                            sum[i].Start = Start;
                            Min = min(Min, i-Start+1);
                        }
                    }
                }
            }
    
            printf("%d
    ", Min!=N?Min:-1);
        }
    
        return 0;
    }
    
    
    /**
    
    300
    5 4
    1 2 1 2 1
    6 -2
    -5 -6 -7 -8 -9 -10
    5 3
    -1 1 1 1 -1
    8 6
    1 1 1 1 1 2 3 4
    6 5
    4 -3 4 -1 2 2
    6 6
    -5 1 2 4 1 3
    6 5
    4 -3 4 -1 -2 2
    6 5
    -1 -1 -2 3 -2 5
    4 5
    3 -2 4 1
    8 6
    1 1 1 1 1 3 1 2
    8 6
    1 1 1 1 1 3 2 1
    8 6
    1 1 1 1 1 3 1 1
    
    
    **/
  • 相关阅读:
    JDBC的异常
    JDBC的事务
    JDBC的数据类型
    JDBC的结果集
    JDBC操作MySQL出现:This result set must come from a statement that was created with a result set type of ResultSet.CONCUR_UPDATABLE, ...的问题解决
    JDBC的Statement对象
    JDBC连接数据库
    JDBC驱动类型
    JDBC实例代码
    java与javax的区别分析(转)
  • 原文地址:https://www.cnblogs.com/YY56/p/5473135.html
Copyright © 2011-2022 走看看