zoukankan      html  css  js  c++  java
  • 6609

    https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4620

     

     

    You are given an integer sequence of length N and another value X. You have to find a contiguous
    subsequence of the given sequence such that the sum is greater or equal to X. And you have to find
    that segment with minimal length.
    Input
    First line of the input file contains T the number of test cases. Each test case starts with a line
    containing 2 integers N (1 ≤ N ≤ 500000) and X (−109 ≤ X ≤ 109
    ). Next line contains N integers
    denoting the elements of the sequence. These integers will be between −109
    to 109
    inclusive.
    Output
    For each test case output the minimum length of the sub array whose sum is greater or equal to X. If
    there is no such array, output ‘-1’.
    Sample Input
    3
    5 4
    1 2 1 2 1
    6 -2
    -5 -6 -7 -8 -9 -10
    5 3
    -1 1 1 1 -1
    Sample Output
    3
    -1
    3

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <queue>
    #include <vector>
    #include <map>
    #include <algorithm>
    using namespace std;
    
    const int N = 510000;
    const int INF = 0x3fffffff;
    typedef long long LL;
    #define met(a,b) (memset(a,b,sizeof(a)))
    
    struct node
    {
        LL x;
        int Start;
    } sum[N];
    
    LL a[N];
    
    int main()
    {
        int T;
        scanf("%d", &T);
        while(T--)
        {
            int n, i, Min=N, X, Start;
            LL x;
    
            met(a, 0);
            met(sum, 0);
    
            scanf("%d%lld", &n, &x);
    
            for(i=1; i<=n; i++)
                scanf("%lld", &a[i]);
    
            for(i=1; i<=n; i++)
            {
                if(sum[i-1].x<=0 || i==1)
                {
                    sum[i].x = a[i];
                    sum[i].Start = i;
                }
                else
                {
                    sum[i].x = sum[i-1].x + a[i];
                    sum[i].Start = sum[i-1].Start;
                }
                if(sum[i].x>=x)
                {
                    Min = min(Min, i-sum[i].Start+1);
                    X = sum[i].x, Start = sum[i].Start;
                    while(X>=0 && Start<=i)
                    {
                        X -= a[Start];
                        Start++;
                        if(X >= x)
                        {
                            sum[i].x = X;
                            sum[i].Start = Start;
                            Min = min(Min, i-Start+1);
                        }
                    }
                }
            }
    
            printf("%d
    ", Min!=N?Min:-1);
        }
    
        return 0;
    }
    
    
    /**
    
    300
    5 4
    1 2 1 2 1
    6 -2
    -5 -6 -7 -8 -9 -10
    5 3
    -1 1 1 1 -1
    8 6
    1 1 1 1 1 2 3 4
    6 5
    4 -3 4 -1 2 2
    6 6
    -5 1 2 4 1 3
    6 5
    4 -3 4 -1 -2 2
    6 5
    -1 -1 -2 3 -2 5
    4 5
    3 -2 4 1
    8 6
    1 1 1 1 1 3 1 2
    8 6
    1 1 1 1 1 3 2 1
    8 6
    1 1 1 1 1 3 1 1
    
    
    **/
  • 相关阅读:
    netcore 发布到IIS上常见错误
    mysql解压文件安装
    VS2017 怎么启用nuget程序包还原?
    vue-qr生成下载二维码
    控制器,action, 过滤器, 权限
    WebSocket浅析(一):实现群聊功能
    BOM元素之window对象
    arguments及arguments.callee
    Spring入门6事务管理2 基于Annotation方式的声明式事务管理机制
    Spring入门5.事务管理机制
  • 原文地址:https://www.cnblogs.com/YY56/p/5473135.html
Copyright © 2011-2022 走看看