zoukankan      html  css  js  c++  java
  • 使用python创建mxnet操作符(网络层)

    对cuda了解不多,所以使用python创建新的操作层是个不错的选择,当然这个性能不如cuda编写的代码。

    在MXNET源码的example/numpy-ops/下有官方提供的使用python编写新操作符的实例。分别跑ndarray_softmax.py、numpy_softmax.py和custom_softmax.py 发现ndarray_softmax.py中训练速度将近其他两种方法的3倍,分析发现ndarray_softmax.py中调用cuda核,而其他两种方法都是numpy在cpu上的运行。

    这里总结一下我对ndarray_softmax.py的理解。

    分析一下ndarray_softmax.py源码,重写了父类的一些基本方法,其中最重要的是前向和后向操作:

     1 def forward(self, in_data, out_data):
     2       x = in_data[0]
     3       y = out_data[0]
     4       if self.fwd_kernel is None:
     5           self.fwd_kernel = mx.rtc('softmax', [('x', x)], [('y', y)], """
     6   int i = threadIdx.x + blockIdx.x*blockDim.x;
     7   float max_x = x[i*x_dims[1]];
     8   for (int j = 1; j < x_dims[1]; ++j) {
     9       if (max_x < x[i*x_dims[1]+j]) {
    10           max_x = x[i*x_dims[1]+j];
    11       }
    12   }
    13   float sum = 0.0f;
    14   for (int j = 0; j < x_dims[1]; ++j) {
    15       sum += expf(x[i*x_dims[1]+j]-max_x);
    16   }
    17   for (int j = 0; j < x_dims[1]; ++j) {
    18       y[i*x_dims[1]+j] = expf(x[i*x_dims[1]+j]-max_x)/sum;
    19   }
    20   """)
    21       self.fwd_kernel.push([x], [y], (1, 1, 1), (x.shape[0], 1, 1))
    22 23   def backward(self, out_grad, in_data, out_data, in_grad):
    24       l = in_data[1]
    25       y = out_data[0]
    26       dx = in_grad[0]
    27       if self.bwd_kernel is None:
    28           self.bwd_kernel = mx.rtc('softmax_grad', [('y', y), ('l', l)], [('dx', dx)], """
    29   int i = blockIdx.x;
    30   int j = threadIdx.x;
    31   int k = static_cast<int>(l[i]);
    32   if (j == k) {
    33       dx[i*dx_dims[1]+j] = y[i*dx_dims[1]+j] - 1.0f;
    34   } else {
    35       dx[i*dx_dims[1]+j] = y[i*dx_dims[1]+j];
    36   }
    37   """)
    38       self.bwd_kernel.push([y,l], [dx], (y.shape[0],1,1), (y.shape[1], 1, 1))
    View Code

    使用mx.rtc(...)定义的就是cuda 编译相关内容了,查看/python/mxnet/rtc.py中Rtc类的定义,其参数部分描述如下:

     1 """MXRtc object in mxnet.
     2       This class allow you to write CUDA kernels in Python
     3       and call them with NDArray.
     4  5       Parameters
     6       ----------
     7       name : str
     8           Name of the kernel.
     9       inputs : tuple of (str, mxnet.ndarray)
    10           List of input names and ndarray.
    11       outputs : tuple of (str, mxnet.ndarray)
    12           List of output names and ndarray.
    13       kernel : str
    14           The actual kernel code.
    15           Note that this is only the body of the kernel, i.e.
    16           after { and before }. Rtc will decorate the kernel.
    17           For example, if ``name = "mykernel"`` and
    18           inputs = [('x', mx.nd.zeros((10,)))]
    19           outputs = [('y', mx.nd.zeros((10,)))]
    20           kernel = "y[threadIdx.x] = x[threadIdx.x];",
    21           then the compiled kernel will be:
    22           extern "C" __global__ mykernel(float *x, float *y) {
    23               const int x_ndim = 1;
    24               const int x_dims = { 10 };
    25               const int y_ndim = 1;
    26               const int y_dims = { 10 };
    27 28               y[threadIdx.x] = x[threadIdx.x];
    29           }
    30       """
    View Code

    以ndarray_softmax.py为例, softmax层输入数据shape=(100,10),输出数据shape=(100,10),那么forward方法里的x_dim=(100,10), 第三个参数即cuda编译的要执行的语句。 在forward方法中看到最后一句push方法,gridDim={'x':1,'y':1,'z':1}, blockDim={'x':100,'y':1,'z':1} (cuda存储参见cudaMemcpy与kernel),于是每一个线程操作一个sample的10个elements,threadIdx.x表示线程在block块中的索引,那么threadIdx.x+blockIdx.x*blockDim.x就是对应线程总的索引,blockDim对应的是block中threads的个数,然后后面softmax前向计算就容易理解了。

    再看backward方法,这个kernel将gradDim划分成(100,1,1), blockDim划分成(10,1,1),即每一个element对应着一个线程,然后在每一个线程中计算该element对应的梯度。

    example:

    实现一个reorganize层,也就是yolo中特征重组层,具体功能YOLO v2 reorg 当然,最清楚的方式是看darknet中源码如何实现。

    这个例子只是想继承mx.operator.NDArrayOp实现新的操作层,该操作层中没有权重参数,对于有权重的层要在forward和backward中操作对应的值。

      1  # -*- coding: utf-8 -*-
      2   import mxnet as mx
      3   import numpy as np
      4   import logging
      5   6   class NDArrayReorg(mx.operator.NDArrayOp):
      7       def __init__(self, stride=2):
      8           super(NDArrayReorg, self).__init__(True)
      9           self.stride = stride
     10           self.fwd_kernel = None
     11           self.bwd_kernel = None
     12           
     13       def list_arguments(self):
     14           return ['data']
     15       
     16       def list_outputs(self):
     17           return ['output']
     18       
     19       def infer_shape(self, in_shape):
     20           data_shape = in_shape[0]
     21           output_shape = [in_shape[0][0], in_shape[0][1]*4
     22                           , in_shape[0][2]/self.stride, in_shape[0][3]/self.stride]
     23                           
     24           return [data_shape], [output_shape]
     25           
     26       def forward(self, in_data, out_data):
     27           x = in_data[0]
     28           y = out_data[0]
     29           if self.fwd_kernel is None:
     30               self.fwd_kernel = mx.rtc('reorg',[('x',x)],[('y',y)],"""
     31               int i = threadIdx.x + blockIdx.x*blockDim.x ;
     32               int yw=y_dims[3];
     33               int yh = y_dims[2];
     34               int N = yw*yh;
     35               int xw=x_dims[3];
     36               int xh = x_dims[2];
     37               int len_block = x_dims[2]*x_dims[3];
     38               for(int j =0; j<xh; j+=2)
     39                   for(int k=0; k<xw; k+=2)
     40                   {   int t=j/2;
     41                       y[i*len_block+t*yw+k/2] = x[i*len_block+j*xw+k];
     42                       y[i*len_block+t*yw+k/2+N] = x[i*len_block + j*xw+k+1];
     43                       y[i*len_block+t*yw+k/2+2*N] = x[i*len_block +(j+1)*xw+k];
     44                       y[i*len_block+t*yw+k/2+3*N] = x[i*len_block +(j+1)*xw+k+1];                 
     45                   }       
     46               """)
     47           self.fwd_kernel.push([x],[y],(x.shape[0]*x.shape[1],1,1),(1,1,1))
     48       
     49       def backward(self, out_grad, in_data, out_data, in_grad):
     50           y = out_grad[0]
     51           dx = in_grad[0]
     52           if self.bwd_kernel is None:
     53               self.bwd_kernel = mx.rtc('reorg_grad',[('y',y)],[('dx', dx)],"""
     54               int i = threadIdx.x + blockIdx.x * blockDim.x;
     55               int yh = y_dims[2];
     56               int yw = y_dims[3];
     57               int N = yw*yh;
     58               int old_block = dx_dims[2]*dx_dims[3];
     59               for(int k=0;k<4;++k)
     60                   for(int j=0; j<yw; ++j)
     61                       for(int t=0; t<yh; ++t){
     62                           dx[i*old_block+2*j*yw+t*2+k]=y[i*old_block+k*N+j*yw+t];     
     63                   }           
     64               """)
     65           self.bwd_kernel.push([y],[dx],(y.shape[0]*y.shape[1]/4,1,1),(1,1,1))
     66           
     67   mnist = mx.test_utils.get_mnist()
     68   batch_size = 100
     69   train_iter = mx.io.NDArrayIter(mnist['train_data'], mnist['train_label'], batch_size, shuffle=True)
     70   val_iter = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], batch_size)
     71  72  73   data = mx.sym.var('data')
     74   conv1 = mx.sym.Convolution(data=data, kernel=(5,5), num_filter=20)
     75   tanh1 = mx.sym.Activation(data=conv1, act_type="tanh")
     76   # pool1 = mx.sym.Pooling(data=tanh1, pool_type="max", kernel=(2,2), stride=(2,2))
     77  78   reorg = NDArrayReorg(stride=2)
     79   reg = reorg(data=tanh1, name='reorg')  
     80 conv2 = mx.sym.Convolution(data=reg, kernel=(5,5), num_filter=20)  
     81 tanh2 = mx.sym.Activation(data=conv2, act_type="tanh") # 80x8x8  
     82  83 conv2 = mx.sym.Convolution(data=tanh2, kernel=(5,5), num_filter=50)  
     84 tanh2 = mx.sym.Activation(data=conv2, act_type="tanh")  
     85 # pool2 = mx.sym.Pooling(data=tanh2, pool_type="max", kernel=(2,2), stride=(2,2))  
     86  87 flatten = mx.sym.flatten(data=tanh2)  
     88 fc1 = mx.sym.FullyConnected(data=flatten,num_hidden=500)  
     89 tanh3 = mx.sym.Activation(data=fc1, act_type="tanh")  
     90  91 fc2 = mx.sym.FullyConnected(data=tanh3, num_hidden=10)  
     92  93 mynet = mx.sym.SoftmaxOutput(data=fc2, name='softmax')  
     94  95 print(mynet.infer_shape(data=(100,1,28,28)))  
     96 mynet_model = mx.mod.Module(symbol=mynet, context=mx.gpu())  
     97  98 mynet_model.fit(train_iter,  
     99 eval_data=val_iter,  
    100 optimizer='sgd',  
    101 optimizer_params = {'learning_rate':0.1},  
    102 eval_metric='acc',  
    103 batch_end_callback=mx.callback.Speedometer(100,100),  
    104 num_epoch=10)  
    105 
    106 test_iter = mx.io.NDArrayIter(mnist['test_data'], None, batch_size)  
    107 prob = mynet_model.predict(test_iter)  
    108 test_iter = mx.io.NDArrayIter(mnist['test_data'], mnist['test_label'], batch_size)  
    109 # predict accuracy for lenet  
    110 acc = mx.metric.Accuracy()  
    111 mynet_model.score(test_iter, acc)  
    112 print(acc) # 网络是随便构建的,参数也是随便选的,所以出来的值并没有什么参考价值,只是为了验证调用mx.rtc创建cuda的kernel
    View Code

    因此,对于定制的层,可是使用类似的方法定义,该方法显然比使用numpy要快的多。

     

  • 相关阅读:
    弹窗
    ajax
    Jquery元素选取、常用方法
    PDO
    session的使用
    投票练习题
    php 批量删除
    php 连接数据库的增删改查
    面向对象的加载类和设计模式
    面向对象三大特性
  • 原文地址:https://www.cnblogs.com/YiXiaoZhou/p/7477412.html
Copyright © 2011-2022 走看看