zoukankan      html  css  js  c++  java
  • BZOJ 3239--Discrete Logging(BSGS)

    3239: Discrete Logging

    Time Limit: 1 Sec  Memory Limit: 128 MB
    Submit: 635  Solved: 413
    [Submit][Status][Discuss]

    Description

    Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 2 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that

        BL = N (mod P)

    Input

    Read several lines of input, each containing P,B,N separated by a space, 

    Output

    for each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".

    The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states

      B(P-1)= 1 (mod P)

    for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m

      B(-m) = B(P-1-m)(mod P)

    Sample Input

    5 2 1
    5 2 2
    5 2 3
    5 2 4
    5 3 1
    5 3 2
    5 3 3
    5 3 4
    5 4 1
    5 4 2
    5 4 3
    5 4 4
    12345701 2 1111111
    1111111121 65537 1111111111

    Sample Output

    0
    1
    3
    2
    0
    3
    1
    2
    0
    no solution
    no solution
    1
    9584351
    462803587

    题目链接:

        http://www.lydsy.com/JudgeOnline/problem.php?id=3239 

    Solution

        BSGS的模板题。。。。

        对于本题的做法。。一般是先设 L = i * e + j 或 L = i * e - j 。。。

        e = ceil(sqrt(P))。。就是假如算出 sqrt(P)= 1.14 ,e就等于2,往大的取整

        然后枚举 i 和 j 的值就能做到 O(sqrt(P))。。。

    代码

    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    #include<iostream>
    #include<map>
    #define LL long long
    using namespace std;
     
    LL P,B,N,e,now;
    map<LL,int>mp;
    LL pow(LL p,LL q){
        LL s=1;
        while(q){
            if(q&1) s=s*p%P;
            q>>=1;
            p=p*p%P;
        }
        return s;
    }
    void solve(){
        mp.clear();
        if(N==1 && B>0){
            printf("0
    ");
            return;
        }
        if( (!B) && (!N) ){printf("1
    ");return;}
        if(!B){printf("no solution
    ");return;}
        e=ceil(sqrt(P));
        now=N%P;
        for(int j=1;j<=e;j++){
            now=now*B%P;
            if(!mp[now]) mp[now]=j;
        }
        B=pow(B,e);
        now=1;
        for(int i=1;i<=e;i++){
            now=now*B%P;
            if(mp[now]>0){
                N=e*i-mp[now];
                printf("%lld
    ",N);
                return;
            }
        }
        printf("no solution
    ");
        return;
    }
    int main(){
        while(scanf("%lld%lld%lld",&P,&B,&N)!=EOF) solve();
        return 0;
    }
    

      

      

    This passage is made by Iscream-2001.

  • 相关阅读:
    大数减法
    MySQL配置的一些坑
    最大流_Edmonds-Karp算法
    最小生成树两连
    最短路三连
    对拍
    Broadcast
    Intent
    Custom Views
    Fragment
  • 原文地址:https://www.cnblogs.com/Yuigahama/p/7800433.html
Copyright © 2011-2022 走看看