zoukankan      html  css  js  c++  java
  • POJ 2823 Sliding Window ST RMQ

    Description

    An array of size n ≤ 106 is given to you. There is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves rightwards by one position. Following is an example: 
    The array is [1 3 -1 -3 5 3 6 7], and k is 3.
    Window positionMinimum valueMaximum value
    [1  3  -1] -3  5  3  6  7  -1 3
     1 [3  -1  -3] 5  3  6  7  -3 3
     1  3 [-1  -3  5] 3  6  7  -3 5
     1  3  -1 [-3  5  3] 6  7  -3 5
     1  3  -1  -3 [5  3  6] 7  3 6
     1  3  -1  -3  5 [3  6  7] 3 7

    Your task is to determine the maximum and minimum values in the sliding window at each position. 

    Input

    The input consists of two lines. The first line contains two integers n and k which are the lengths of the array and the sliding window. There are n integers in the second line. 

    Output

    There are two lines in the output. The first line gives the minimum values in the window at each position, from left to right, respectively. The second line gives the maximum values. 

    Sample Input

    8 3
    1 3 -1 -3 5 3 6 7
    

    Sample Output

    -1 -3 -3 -3 3 3
    3 3 5 5 6 7
    

    Source

     
    题意 :给定长n的数列,问长为k的区间在数列中所有情况的最小值和最大值。
    思路:学长教导的RMQ解法,ST版实质是DP,比起不太懂DP的以前,现在感觉好理解多了。此外感觉可以使用线段树解。
    注意先打log的表。
     1 #include <stdio.h>
     2 #include <algorithm>
     3 //#define LOG[i] = (i & (i - 1)) ? LOG[i - 1] : LOG[i - 1] + 1
     4 #define MAXX 1234567
     5 #include <vector>
     6 using namespace std;
     7 
     8 int a[MAXX];
     9 int dp1[MAXX][22];
    10 int LOG[MAXX];
    11 
    12 void init(int n)
    13 {
    14     LOG[1] = 0; 
    15     for(int i=2; i<=n; i++)
    16         LOG[i]=(i&(i-1))?LOG[i-1]:LOG[i-1]+1;
    17 }
    18 
    19 int ST(int l, int r, int i)
    20 {
    21     int k=LOG[r-l+1];
    22     if(i==1)
    23         return max(dp1[l][k],dp1[r-(1<<k)+1][k]);
    24     if(i==0)
    25         return min(dp1[l][k],dp1[r-(1<<k)+1][k]);
    26 }
    27 int main()
    28 {
    29     int n, k;
    30     
    31     while(~scanf("%d%d",&n, &k))
    32     {
    33         int i, j;
    34         init(n); 
    35         for(i=1; i<=n; i++)
    36         {
    37             scanf("%d", &a[i]);
    38             dp1[i][0]=a[i];
    39         }
    40         for(j=1; j<=20; j++)
    41         { 
    42             for(i=1; i<=n; i++)
    43             {
    44                 if(i+(1<<j)-1>n)
    45                     break;
    46                 dp1[i][j]=min(dp1[i][j-1], dp1[i+(1<<(j-1))][j-1]);
    47             }
    48         }
    49         for(i=1; i<=n-k+1; i++)
    50         {
    51             if(i!=1)
    52                 printf(" ");
    53             printf("%d", ST(i,i+k-1,0));
    54         }
    55         //////
    56 
    57         for(i=1; i<=n; i++)
    58         {
    59             dp1[i][0]=a[i];
    60             for(j=1; j<=20; j++)
    61                 dp1[i][j]=0;
    62         }
    63         for(j=1; j<=20; j++)
    64         { 
    65             for(i=1; i<=n; i++)
    66             {
    67                 if(i+(1<<j)-1>n)
    68                     break;
    69                 dp1[i][j]=max(dp1[i][j-1], dp1[i+(1<<(j-1))][j-1]);
    70             }
    71         } 
    72         printf("
    ");
    73         for(i=1; i<=n-k+1; i++)
    74         {
    75             if(i!=1)
    76                 printf(" ");
    77             printf("%d", ST(i,i+k-1,1));
    78         }
    79         printf("
    ");
    80     }
    81 } 
  • 相关阅读:
    Nginx优化
    Mysql日常操作
    YUM源
    MySQL5.7安装手册
    自律——可以让我们活的更高级
    javascript中with的用法
    js中所有函数的参数(按值和按引用)都是按值传递的,怎么理解?
    base64编码的图片在网页中显示
    form表单提交没有跨域问题,但ajax提交存在跨域问题
    移动端1px的适配问题
  • 原文地址:https://www.cnblogs.com/Yumesenya/p/5501071.html
Copyright © 2011-2022 走看看