求满足$1<=X<=N ,(X,N)>=M$的个数,其中$N, M (2<=N<=1000000000, 1<=M<=N)$。
首先,假定$(x, n)=m$,那么 $(frac{x}{n},frac{n}{m})=1$,故$$ans=sum_{i=m}^{n}varphi(frac{n}{i})$$
ん?遅い!
$$sum_{i=m}^{n}varphi(frac{n}{i})=sumlimits_{d|n}{varphi(frac{n}{d})}$$
其实还可以再优化下的吧?
/** @Date : 2017-09-20 21:55:29 * @FileName: HDU 2588 思维 容斥 或 欧拉函数.cpp * @Platform: Windows * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : https://github.com/ * @Version : $Id$ */ #include <bits/stdc++.h> #define LL long long #define PII pair<int ,int> #define MP(x, y) make_pair((x),(y)) #define fi first #define se second #define PB(x) push_back((x)) #define MMG(x) memset((x), -1,sizeof(x)) #define MMF(x) memset((x),0,sizeof(x)) #define MMI(x) memset((x), INF, sizeof(x)) using namespace std; const int INF = 0x3f3f3f3f; const int N = 1e5+20; const double eps = 1e-8; LL pri[N]; int vis[N]; int c = 0; void prime() { MMF(vis); for(int i = 2; i < N; i++) { if(!vis[i]) pri[c++] = i; for(int j = 0; j < c && i * pri[j] < N; j++) { vis[i * pri[j]] = 1; if(i % pri[j] == 0) break; } } } LL get_phi(LL x) { LL ans = x; for(int i = 0; i < c && pri[i] <= x / pri[i]; i++) { if(x % pri[i] == 0) { while(x % pri[i] == 0) x /= pri[i]; ans = ans / pri[i] * (pri[i] - 1); } } if(x > 1) ans = ans / x * (x - 1); return ans; } int main() { int T; cin >> T; prime(); while(T--) { LL n, m; scanf("%lld%lld", &n, &m); LL t = n; LL ans = 0; for(LL i = 1; i <= t / i; i++) { if(t % i == 0) { //cout << i << t/i << endl; if(i >= m) ans += get_phi(n / i); if(t / i != i && t / i >= m) ans += get_phi(n / (t / i)); } } printf("%lld ", ans); } return 0; }