[HAOI2007]理想的正方形
题目描述
有一个(a*b)的整数组成的矩阵,现请你从中找出一个(n*n)的正方形区域,使得该区域所有数中的最大值和最小值的差最小。
输入输出格式
输入格式:
第一行为3个整数,分别表示(a,b,n)的值
第二行至第(a+1)行每行为(b)个非负整数,表示矩阵中相应位置上的数。每行相邻两数之间用一空格分隔。
输出格式:
仅一个整数,为(a*b)矩阵中所有(n*n)正方形区域中的最大整数和最小整数的差值”的最小值。
输入输出样例
输入样例#1:
5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2
输出样例#1:
1
说明
问题规模
(1)矩阵中的所有数都不超过(1,000,000,000)
(2)(20\%)的数据(2<=a,b<=100,n<=a,n<=b,n<=10)
(3)(100\%)的数据(2<=a,b<=1000,n<=a,n<=b,n<=100)
题解
刚学的二维(ST)表,和一维的大同小异。
(mx[k][i][j])表示以((i,j))作为左上角,边长为(2^k)的正方形内的最大值。
转移:
$mx[k][i][j]=max(max(mx[k-1][i][j],mx[k-1][i][j+(1<<(k-1))]),max(mx[k-1][i+(1<<(k-1))][j],mx[k-1][i+(1<<(k-1))][j+(1<<(k-1))])); $
最小值也是一样。
最后(N^2)枚举左上角端点统计答案。
code:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cctype>
#include<cmath>
#define ll long long
#define R register
#define N 1005
using namespace std;
template<typename T>inline void read(T &a){
char c=getchar();T x=0,f=1;
while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
a=f*x;
}
int a,b,n,x,maxans,minans,ans=0x7fffffffLL,mx[11][N][N],mi[11][N][N];
int main(){
read(a);read(b);read(n);
for(R int i=1;i<=a;i++)
for(R int j=1;j<=b;j++)
read(x),mi[0][i][j]=mx[0][i][j]=x;
for(R int k=1;(1<<k)<=n;k++)
for(R int i=1;i<=a-(1<<k)+1;i++)
for(R int j=1;j<=b-(1<<k)+1;j++)
mi[k][i][j]=min(min(mi[k-1][i][j],mi[k-1][i][j+(1<<(k-1))]),min(mi[k-1][i+(1<<(k-1))][j],mi[k-1][i+(1<<(k-1))][j+(1<<(k-1))])),
mx[k][i][j]=max(max(mx[k-1][i][j],mx[k-1][i][j+(1<<(k-1))]),max(mx[k-1][i+(1<<(k-1))][j],mx[k-1][i+(1<<(k-1))][j+(1<<(k-1))]));
R int k=(int)log2(n);
for(R int i=1;i<=a-n+1;i++){
for(R int j=1;j<=b-n+1;j++){
minans=0x7fffffff;maxans=-0x7fffffff;
maxans=max(max(mx[k][i][j],mx[k][i][j+n-(1<<k)]),max(mx[k][i+n-(1<<k)][j],mx[k][i+n-(1<<k)][j+n-(1<<k)]));
minans=min(min(mi[k][i][j],mi[k][i][j+n-(1<<k)]),min(mi[k][i+n-(1<<k)][j],mi[k][i+n-(1<<k)][j+n-(1<<k)]));
ans=min(maxans-minans,ans);
}
}
printf("%d
",ans);
return 0;
}