Time Limit: 5000MS | Memory Limit: 131072K | |
Total Submissions: 8551 | Accepted: 3089 | |
Case Time Limit: 2000MS |
Description
Given a m-by-n (0,1)-matrix, of all its submatrices of all 1’s which is the largest? By largest we mean that the submatrix has the most elements.
Input
The input contains multiple test cases. Each test case begins with m and n (1 ≤ m, n ≤ 2000) on line. Then come the elements of a (0,1)-matrix in row-major order on m lines each with nnumbers. The input ends once EOF is met.
Output
For each test case, output one line containing the number of elements of the largest submatrix of all 1’s. If the given matrix is of all 0’s, output 0.
Sample Input
2 2 0 0 0 0 4 4 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0
Sample Output
0 4
题意:
求内部全部都是1的子矩阵最大面积。
思路:
第一时间想到了一个n的3次方的dp,但是这样肯定超时。
类似的题 :https://www.cnblogs.com/ZGQblogs/p/10664506.html
如果不是在学单调栈,我觉得我一定是想不到的。
首先就是维护每一行的每一个位置,如果以当前行为底,上面连续的1有多少个。
然后就是这个题:http://poj.org/problem?id=2559
代码:
加了读入挂才过~~~
1 #include<iostream> 2 #include<algorithm> 3 #include<vector> 4 #include<stack> 5 #include<queue> 6 #include<map> 7 #include<set> 8 #include<cstdio> 9 #include<cstring> 10 #include<cmath> 11 #include<ctime> 12 #define fuck(x) cout<<#x<<" = "<<x<<endl; 13 #define debug(a,i) cout<<#a<<"["<<i<<"] = "<<a[i]<<endl; 14 #define ls (t<<1) 15 #define rs ((t<<1)+1) 16 using namespace std; 17 typedef long long ll; 18 typedef unsigned long long ull; 19 const int maxn = 2086; 20 const int maxm = 2086; 21 const int inf = 2.1e9; 22 const ll Inf = 999999999999999999; 23 const int mod = 1000000007; 24 const double eps = 1e-6; 25 const double pi = acos(-1); 26 27 int l[maxn],r[maxn]; 28 struct node{ 29 int num,pos; 30 }; 31 int mp[maxn][maxn]; 32 stack<node>st; 33 34 35 int solve(int *num,int n){ 36 for(int i=1;i<=n;i++){ 37 l[i]=r[i]=i; 38 } 39 num[0]=num[n+1]=-1; 40 for(int i=1;i<=n+1;i++){ 41 while(!st.empty()&&st.top().num>num[i]){ 42 r[st.top().pos]=i-1; 43 st.pop(); 44 } 45 st.push(node{num[i],i}); 46 } 47 while(!st.empty()){st.pop();} 48 49 for(int i=n;i>=0;i--){ 50 while(!st.empty()&&st.top().num>num[i]){ 51 l[st.top().pos]=i+1; 52 st.pop(); 53 } 54 st.push(node{num[i],i}); 55 } 56 ll ans=0; 57 for(int i=1;i<=n;i++){ 58 ans=max(ans,1ll*num[i]*(r[i]-l[i]+1)); 59 } 60 while(!st.empty()){st.pop();} 61 return ans; 62 } 63 64 char buf[maxn], *ps = buf, *pe = buf+1; 65 inline void rnext(){ 66 if(++ps == pe) 67 pe = (ps = buf)+fread(buf,1,sizeof(buf),stdin); 68 } 69 template <class T> 70 inline bool in(T &ans) 71 { 72 ans = 0; 73 T f = 1; 74 if(ps == pe) return false; 75 do{ 76 rnext(); 77 if('-' == *ps) f = -1; 78 }while(!isdigit(*ps) && ps != pe); 79 if(ps == pe) return false; 80 do 81 { 82 ans = (ans<<1)+(ans<<3)+*ps-48; 83 rnext(); 84 }while(isdigit(*ps) && ps != pe); 85 ans *= f; 86 return true; 87 } 88 89 int main() 90 { 91 // freopen("in.txt","r",stdin); 92 int n,m; 93 while(true){ 94 in(n);in(m); 95 if(!m||!n){break;} 96 int ans=0; 97 for(int i=1;i<=n;i++){ 98 for(int j=1;j<=m;j++){ 99 in(mp[i][j]); 100 // cout<<mp[i][j]<<endl; 101 if(mp[i][j]==1){mp[i][j]+=mp[i-1][j];} 102 } 103 ans=max(ans,solve(mp[i],m)); 104 } 105 printf("%d ",ans); 106 } 107 return 0; 108 }