zoukankan      html  css  js  c++  java
  • UVA 11375 Matches

    UVA 11375  Matches

    题意:用火柴棍搭数字,能搭多少个非负整数(不能有前导0,数字0是可以的,6根火柴即可搭出)。设一共有n根火柴。

    思路:dp+大整数 设dp[i]:用i根火柴正好能搭的数字的个数  设搭出每个数字j(0<=j<=9)需要的火柴数为c[j].

    那么动态转移方程:dp[i+c[j]]+=dp[i];

    AC代码:

    #define _CRT_SECURE_NO_DEPRECATE
    #include<iostream>
    #include<vector>
    #include<algorithm>
    #include<cstdlib>
    #include<cstring>
    #include<cmath>
    #include<string>
    using namespace std;
    const int N_MAX = 2000 + 20;
    #define MAX_L 2005 //最大长度,可以修改  
    typedef unsigned long long ll;
    
    class bign
    {
    public:
        int len, s[MAX_L];//数的长度,记录数组  
                          //构造函数  
        bign();
        bign(const char*);
        bign(int);
        bool sign;//符号 1正数 0负数  
        string toStr() const;//转化为字符串,主要是便于输出  
        friend istream& operator >> (istream &, bign &);//重载输入流  
        friend ostream& operator<<(ostream &, bign &);//重载输出流  
                                                      //重载复制  
        bign operator=(const char*);
        bign operator=(int);
        bign operator=(const string);
        //重载各种比较  
        bool operator>(const bign &) const;
        bool operator>=(const bign &) const;
        bool operator<(const bign &) const;
        bool operator<=(const bign &) const;
        bool operator==(const bign &) const;
        bool operator!=(const bign &) const;
        //重载四则运算  
        bign operator+(const bign &) const;
        bign operator++();
        bign operator++(int);
        bign operator+=(const bign&);
        bign operator-(const bign &) const;
        bign operator--();
        bign operator--(int);
        bign operator-=(const bign&);
        bign operator*(const bign &)const;
        bign operator*(const int num)const;
        bign operator*=(const bign&);
        bign operator/(const bign&)const;
        bign operator/=(const bign&);
        //四则运算的衍生运算  
        bign operator%(const bign&)const;//取模(余数)  
        bign factorial()const;//阶乘  
        bign Sqrt()const;//整数开根(向下取整)  
        bign pow(const bign&)const;//次方  
                                   //一些乱乱的函数  
        void clean();
        ~bign();
    };
    #define max(a,b) a>b ? a : b  
    #define min(a,b) a<b ? a : b  
    
    bign::bign()
    {
        memset(s, 0, sizeof(s));
        len = 1;
        sign = 1;
    }
    
    bign::bign(const char *num)
    {
        *this = num;
    }
    
    bign::bign(int num)
    {
        *this = num;
    }
    
    string bign::toStr() const
    {
        string res;
        res = "";
        for (int i = 0; i < len; i++)
            res = (char)(s[i] + '0') + res;
        if (res == "")
            res = "0";
        if (!sign&&res != "0")
            res = "-" + res;
        return res;
    }
    
    istream &operator >> (istream &in, bign &num)
    {
        string str;
        in >> str;
        num = str;
        return in;
    }
    
    ostream &operator<<(ostream &out, bign &num)
    {
        out << num.toStr();
        return out;
    }
    
    bign bign::operator=(const char *num)
    {
        memset(s, 0, sizeof(s));
        char a[MAX_L] = "";
        if (num[0] != '-')
            strcpy(a, num);
        else
            for (int i = 1; i < strlen(num); i++)
                a[i - 1] = num[i];
        sign = !(num[0] == '-');
        len = strlen(a);
        for (int i = 0; i < strlen(a); i++)
            s[i] = a[len - i - 1] - 48;
        return *this;
    }
    
    bign bign::operator=(int num)
    {
        if (num < 0)
            sign = 0, num = -num;
        else
            sign = 1;
        char temp[MAX_L];
        sprintf(temp, "%d", num);
        *this = temp;
        return *this;
    }
    
    bign bign::operator=(const string num)
    {
        const char *tmp;
        tmp = num.c_str();
        *this = tmp;
        return *this;
    }
    
    bool bign::operator<(const bign &num) const
    {
        if (sign^num.sign)
            return num.sign;
        if (len != num.len)
            return len < num.len;
        for (int i = len - 1; i >= 0; i--)
            if (s[i] != num.s[i])
                return sign ? (s[i] < num.s[i]) : (!(s[i] < num.s[i]));
        return !sign;
    }
    
    bool bign::operator>(const bign&num)const
    {
        return num < *this;
    }
    
    bool bign::operator<=(const bign&num)const
    {
        return !(*this>num);
    }
    
    bool bign::operator>=(const bign&num)const
    {
        return !(*this<num);
    }
    
    bool bign::operator!=(const bign&num)const
    {
        return *this > num || *this < num;
    }
    
    bool bign::operator==(const bign&num)const
    {
        return !(num != *this);
    }
    
    bign bign::operator+(const bign &num) const
    {
        if (sign^num.sign)
        {
            bign tmp = sign ? num : *this;
            tmp.sign = 1;
            return sign ? *this - tmp : num - tmp;
        }
        bign result;
        result.len = 0;
        int temp = 0;
        for (int i = 0; temp || i < (max(len, num.len)); i++)
        {
            int t = s[i] + num.s[i] + temp;
            result.s[result.len++] = t % 10;
            temp = t / 10;
        }
        result.sign = sign;
        return result;
    }
    
    bign bign::operator++()
    {
        *this = *this + 1;
        return *this;
    }
    
    bign bign::operator++(int)
    {
        bign old = *this;
        ++(*this);
        return old;
    }
    
    bign bign::operator+=(const bign &num)
    {
        *this = *this + num;
        return *this;
    }
    
    bign bign::operator-(const bign &num) const
    {
        bign b = num, a = *this;
        if (!num.sign && !sign)
        {
            b.sign = 1;
            a.sign = 1;
            return b - a;
        }
        if (!b.sign)
        {
            b.sign = 1;
            return a + b;
        }
        if (!a.sign)
        {
            a.sign = 1;
            b = bign(0) - (a + b);
            return b;
        }
        if (a<b)
        {
            bign c = (b - a);
            c.sign = false;
            return c;
        }
        bign result;
        result.len = 0;
        for (int i = 0, g = 0; i < a.len; i++)
        {
            int x = a.s[i] - g;
            if (i < b.len) x -= b.s[i];
            if (x >= 0) g = 0;
            else
            {
                g = 1;
                x += 10;
            }
            result.s[result.len++] = x;
        }
        result.clean();
        return result;
    }
    
    bign bign::operator * (const bign &num)const
    {
        bign result;
        result.len = len + num.len;
    
        for (int i = 0; i < len; i++)
            for (int j = 0; j < num.len; j++)
                result.s[i + j] += s[i] * num.s[j];
    
        for (int i = 0; i < result.len; i++)
        {
            result.s[i + 1] += result.s[i] / 10;
            result.s[i] %= 10;
        }
        result.clean();
        result.sign = !(sign^num.sign);
        return result;
    }
    
    bign bign::operator*(const int num)const
    {
        bign x = num;
        bign z = *this;
        return x*z;
    }
    bign bign::operator*=(const bign&num)
    {
        *this = *this * num;
        return *this;
    }
    
    bign bign::operator /(const bign&num)const
    {
        bign ans;
        ans.len = len - num.len + 1;
        if (ans.len < 0)
        {
            ans.len = 1;
            return ans;
        }
    
        bign divisor = *this, divid = num;
        divisor.sign = divid.sign = 1;
        int k = ans.len - 1;
        int j = len - 1;
        while (k >= 0)
        {
            while (divisor.s[j] == 0) j--;
            if (k > j) k = j;
            char z[MAX_L];
            memset(z, 0, sizeof(z));
            for (int i = j; i >= k; i--)
                z[j - i] = divisor.s[i] + '0';
            bign dividend = z;
            if (dividend < divid) { k--; continue; }
            int key = 0;
            while (divid*key <= dividend) key++;
            key--;
            ans.s[k] = key;
            bign temp = divid*key;
            for (int i = 0; i < k; i++)
                temp = temp * 10;
            divisor = divisor - temp;
            k--;
        }
        ans.clean();
        ans.sign = !(sign^num.sign);
        return ans;
    }
    
    bign bign::operator/=(const bign&num)
    {
        *this = *this / num;
        return *this;
    }
    
    bign bign::operator%(const bign& num)const
    {
        bign a = *this, b = num;
        a.sign = b.sign = 1;
        bign result, temp = a / b*b;
        result = a - temp;
        result.sign = sign;
        return result;
    }
    
    bign bign::pow(const bign& num)const
    {
        bign result = 1;
        for (bign i = 0; i < num; i++)
            result = result*(*this);
        return result;
    }
    
    bign bign::factorial()const
    {
        bign result = 1;
        for (bign i = 1; i <= *this; i++)
            result *= i;
        return result;
    }
    
    void bign::clean()
    {
        if (len == 0) len++;
        while (len > 1 && s[len - 1] == '')
            len--;
    }
    
    bign bign::Sqrt()const
    {
        if (*this<0)return -1;
        if (*this <= 1)return *this;
        bign l = 0, r = *this, mid;
        while (r - l>1)
        {
            mid = (l + r) / 2;
            if (mid*mid>*this)
                r = mid;
            else
                l = mid;
        }
        return l;
    }
    
    bign::~bign()
    {
    }
    
    
    int c[10] = { 6,2,5,5,4,5,6,3,7,6 };//每个数字i需要用多少火柴构成
    bign dp[N_MAX];//用i根火柴能构成多少数字
    int main() {
        memset(dp, 0, sizeof(dp));
            dp[0] = 1;
            for (int i = 0; i < N_MAX; i++) {
                for (int j = 0; j < 10; j++) {
                    if (!(!i && !j) && i + c[j] < N_MAX) {
                        dp[i + c[j]] += dp[i];
                    }
                }
            }
        int n;
        while (scanf("%d", &n) != EOF) {
            bign sum = 0;
            for (int i = 1; i <= n; i++) {
                sum += dp[i];
            }
            if (n >= 6)sum += 1;
            cout << sum << endl;
        }
        return 0;
    }

     

  • 相关阅读:
    event.keycode大全(javascript) (转)
    Javascript 中的 字符串对象 toUpperCase() toString() charAt() indexOf() lastIndexOf() replace() search() substring()
    Javascript 中的 var
    Javascript 中的 Array
    super() (1)
    Javascript 中的事件
    JavaScript验证函数大全 (转)
    javascript数字验证(转)
    Javascript 中 null 与 undefined关系
    Javascript 中的 for ... in
  • 原文地址:https://www.cnblogs.com/ZefengYao/p/9084004.html
Copyright © 2011-2022 走看看