zoukankan      html  css  js  c++  java
  • Lenet车牌号字符识别+保存模型

    # 部分函数请参考前一篇或后一篇文章
    import tensorflow as tf
    import tfrecords2array
    import numpy as np
    import matplotlib.pyplot as plt
    from collections import OrderedDict
    
    
    def lenet(char_classes):
    
        y_train = []
        x_train = []
        y_test = []
        x_test = []
        for char_class in char_classes:
            train_data = tfrecords2array.tfrecord2array(
                r"./data_tfrecords/" + char_class + "_tfrecords/train.tfrecords")
            test_data = tfrecords2array.tfrecord2array(
                r"./data_tfrecords/" + char_class + "_tfrecords/test.tfrecords")
            y_train.append(train_data[0])
            x_train.append(train_data[1])
            y_test.append(test_data[0])
            x_test.append(test_data[1])
        for i in [y_train, x_train, y_test, x_test]:
            for j in i:
                print(j.shape)
        y_train = np.vstack(y_train)
        x_train = np.vstack(x_train)
        y_test = np.vstack(y_test)
        x_test = np.vstack(x_test)
    
        class_num = y_test.shape[-1]
    
        print("x_train.shape=" + str(x_train.shape))
        print("x_test.shape=" + str(x_test.shape))
        sess = tf.InteractiveSession()
    
        x = tf.placeholder("float", shape=[None, 784])
        y_ = tf.placeholder("float", shape=[None, class_num])
        # 把x更改为4维张量,第1维代表样本数量,第2维和第3维代表图像长宽, 第4维代表图像通道数, 1表示黑白
        x_image = tf.reshape(x, [-1, 28, 28, 1])
    
        # 第一层:卷积层
        conv1_weights = tf.get_variable(
            "conv1_weights",
            [5, 5, 1, 32],
            initializer=tf.truncated_normal_initializer(stddev=0.1))
        # 过滤器大小为5*5, 当前层深度为1, 过滤器的深度为32
        conv1_biases = tf.get_variable("conv1_biases", [32],
                                       initializer=tf.constant_initializer(0.0))
        conv1 = tf.nn.conv2d(x_image, conv1_weights, strides=[1, 1, 1, 1],
                             padding='SAME')
        # 移动步长为1, 使用全0填充
        relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))     # 激活函数Relu去线性化
    
        # 第二层:最大池化层
        # 池化层过滤器的大小为2*2, 移动步长为2,使用全0填充
        pool1 = tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
                               padding='SAME')
    
        # 第三层:卷积层
        conv2_weights = tf.get_variable(
            "conv2_weights",
            [5, 5, 32, 64],
            initializer=tf.truncated_normal_initializer(stddev=0.1))
        # 过滤器大小为5*5, 当前层深度为32, 过滤器的深度为64
        conv2_biases = tf.get_variable(
            "conv2_biases", [64], initializer=tf.constant_initializer(0.0))
        conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1],
                             padding='SAME')
        # 移动步长为1, 使用全0填充
        relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))
    
        # 第四层:最大池化层
        # 池化层过滤器的大小为2*2, 移动步长为2,使用全0填充
        pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
                               padding='SAME')
    
        # 第五层:全连接层
        fc1_weights = tf.get_variable("fc1_weights", [7 * 7 * 64, 1024],
                                      initializer=tf.truncated_normal_initializer(
                                      stddev=0.1))
        # 7*7*64=3136把前一层的输出变成特征向量
        fc1_biases = tf.get_variable(
            "fc1_biases", [1024], initializer=tf.constant_initializer(0.1))
        pool2_vector = tf.reshape(pool2, [-1, 7 * 7 * 64])
        fc1 = tf.nn.relu(tf.matmul(pool2_vector, fc1_weights) + fc1_biases)
    
        # 为了减少过拟合,加入Dropout层
        keep_prob = tf.placeholder(tf.float32)
        fc1_dropout = tf.nn.dropout(fc1, keep_prob)
    
        # 第六层:全连接层
        fc2_weights = tf.get_variable("fc2_weights", [1024, class_num],
                                      initializer=tf.truncated_normal_initializer(
                                      stddev=0.1))
        # 神经元节点数1024, 分类节点10
        fc2_biases = tf.get_variable(
            "fc2_biases", [class_num], initializer=tf.constant_initializer(0.1))
        fc2 = tf.matmul(fc1_dropout, fc2_weights) + fc2_biases
    
        # 第七层:输出层
        # softmax
        y_conv = tf.nn.softmax(fc2)
    
        # 定义交叉熵损失函数
        cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),
                                                      reduction_indices=[1]))
    
        # 选择优化器,并让优化器最小化损失函数/收敛, 反向传播
        train_step = tf.train.AdamOptimizer(1e-5).minimize(cross_entropy)
    
        # tf.argmax()返回的是某一维度上其数据最大所在的索引值,在这里即代表预测值和真实值
        # 判断预测值y和真实值y_中最大数的索引是否一致,y的值为1-class_num概率
        correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    
        # 用平均值来统计测试准确率
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
        # 开始训练
        saver = tf.train.Saver()
        sess.run(tf.global_variables_initializer())
        acc_train_train = []
        acc_train_test = []
        batch_size = 64
        epoch_train = 50001     # restricted by the hardware in my computer
        print("Training steps=" + str(epoch_train))
        for i in range(epoch_train):
            if (i*batch_size % x_train.shape[0]) > ((i + 1)*batch_size %
                                                    x_train.shape[0]):
                x_data_train = np.vstack(
                    (x_train[i*batch_size % x_train.shape[0]:],
                     x_train[:(i+1)*batch_size % x_train.shape[0]]))
                y_data_train = np.vstack(
                    (y_train[i*batch_size % y_train.shape[0]:],
                     y_train[:(i+1)*batch_size % y_train.shape[0]]))
                x_data_test = np.vstack(
                    (x_test[i*batch_size % x_test.shape[0]:],
                     x_test[:(i+1)*batch_size % x_test.shape[0]]))
                y_data_test = np.vstack(
                    (y_test[i*batch_size % y_test.shape[0]:],
                     y_test[:(i+1)*batch_size % y_test.shape[0]]))
            else:
                x_data_train = x_train[
                    i*batch_size % x_train.shape[0]:
                    (i+1)*batch_size % x_train.shape[0]]
                y_data_train = y_train[
                    i*batch_size % y_train.shape[0]:
                    (i+1)*batch_size % y_train.shape[0]]
                x_data_test = x_test[
                    i*batch_size % x_test.shape[0]:
                    (i+1)*batch_size % x_test.shape[0]]
                y_data_test = y_test[
                    i*batch_size % y_test.shape[0]:
                    (i+1)*batch_size % y_test.shape[0]]
            if i % 640 == 0:
                train_accuracy = accuracy.eval(
                    feed_dict={x: x_data_train, y_: y_data_train, keep_prob: 1.0})
                test_accuracy = accuracy.eval(
                    feed_dict={x: x_data_test, y_: y_data_test, keep_prob: 1.0})
                print("step {}, training accuracy={}, testing accuracy={}".format(
                    i, train_accuracy, test_accuracy))
                acc_train_train.append(train_accuracy)
                acc_train_test.append(test_accuracy)
            train_step.run(feed_dict={
                x: x_data_train, y_: y_data_train, keep_prob: 0.5})
        print("saving model...")
        save_path = saver.save(sess, "./my_model/model.ckpt")
        print("save model:{0} Finished".format(save_path))
    
        batch_size_test = 64
        epoch_test = y_test.shape[0] // batch_size_test + 1
        acc_test = 0
        for i in range(epoch_test):
            if (i*batch_size_test % x_test.shape[0]) > ((i + 1)*batch_size_test %
                                                        x_test.shape[0]):
                x_data_test = np.vstack((
                    x_test[i*batch_size_test % x_train.shape[0]:],
                    x_test[:(i+1)*batch_size_test % x_test.shape[0]]))
                y_data_test = np.vstack((
                    y_test[i*batch_size_test % y_test.shape[0]:],
                    y_test[:(i+1)*batch_size_test % y_test.shape[0]]))
            else:
                x_data_test = x_test[
                    i*batch_size_test % x_test.shape[0]:
                    (i+1)*batch_size_test % x_test.shape[0]]
                y_data_test = y_test[
                    i*batch_size_test % y_test.shape[0]:
                    (i+1)*batch_size_test % y_test.shape[0]]
            # plt.imshow(x_data_test[0].reshape(28, 28), cmap="gray")
            # plt.show()
            # Calculate batch loss and accuracy
            c = accuracy.eval(feed_dict={
                x: x_data_test, y_: y_data_test, keep_prob: 1.0})
            acc_test += c / epoch_test
            print("{}-th test accuracy={}".format(i, acc_test))
        print("At last, test accuracy={}".format(acc_test))
    
        print("Finish!")
        return acc_train_train, acc_train_test, acc_test
    
    
    def plot_acc(acc_train_train, acc_train_test, acc_test):
        plt.figure(1)
        p1, p2 = plt.plot(list(range(len(acc_train_train))),
                          acc_train_train, 'r>',
                          list(range(len(acc_train_test))),
                          acc_train_test, 'b-')
        plt.legend(handles=[p1, p2], labels=["training_acc", "testing_acc"])
        plt.title("Accuracies During Training")
        plt.show()
    
    
    def main():
        # integers:         4679
        # alphabets:        9796
        # Chinese_letters:  3974
        # training_set : testing_set == 4 : 1
        train_lst = ['alphabets', 'integers', 'alphabets',
                     'Chinese_letters', 'integers']
        acc_train_train, acc_train_test, acc_test = lenet(train_lst)
        plot_acc(acc_train_train, acc_train_test, acc_test)
    
    
    if __name__ == '__main__':
        main()
    
  • 相关阅读:
    ~~网络编程(六):自定义报头~~
    ~~网络编程(五):粘包现象~~
    ~~网络编程(四):socket套接字~~
    ~~网络编程(三):TCP/UDP~~
    ~~网络编程(二):层级初识~~
    Java的异常处理方式
    Java中的泛型
    Collection接口综述
    匿名内部类和局部内部类只能访问final变量的原因
    Java内部类
  • 原文地址:https://www.cnblogs.com/ZhengPeng7/p/7942303.html
Copyright © 2011-2022 走看看