zoukankan      html  css  js  c++  java
  • The Fewest Coins

    Farmer John has gone to town to buy some farm supplies. Being a very efficient man, he always pays for his goods in such a way that the smallest number of coins changes hands, i.e., the number of coins he uses to pay plus the number of coins he receives in change is minimized. Help him to determine what this minimum number is.

    FJ wants to buy T (1 ≤ T ≤ 10,000) cents of supplies. The currency system has N (1 ≤ N ≤ 100) different coins, with values V1V2, ..., VN(1 ≤ Vi ≤ 120). Farmer John is carrying C1coins of value V1C2 coins of value V2, ...., and CN coins of value VN (0 ≤ Ci ≤ 10,000). The shopkeeper has an unlimited supply of all the coins, and always makes change in the most efficient manner (although Farmer John must be sure to pay in a way that makes it possible to make the correct change).

    Input

    Line 1: Two space-separated integers: N and T
    Line 2: N space-separated integers, respectivelyV 1V 2, ..., VN coins ( V 1, ... VN
    Line 3: N space-separated integers, respectivelyC 1C 2, ..., CN

    Output

    Line 1: A line containing a single integer, the minimum number of coins involved in a payment and change-making. If it is impossible for Farmer John to pay and receive exact change, output -1.

    Sample Input

    3 70
    5 25 50
    5 2 1

    Sample Output

    3

    Hint

    Farmer John pays 75 cents using a 50 cents and a 25 cents coin, and receives a 5 cents coin in change, for a total of 3 coins used in the transaction.
     
    题目意思:给出钱币的方案数和总价值,然后给出每种钱币的价值与数量,而老板也是每种钱币都拥有,但是没有数量限制,购买东西的时候,价值超过给定价值的话,老板会找钱,要求最小的交流钱币的数量
    解题思路:多重背包和完全背包混合使用
     
     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <string.h>
     4 #include<math.h>
     5 #include <algorithm>
     6 using namespace std;
     7 
     8 const int MAX = 40000;
     9 int N,M;
    10 int a[MAX],num[MAX],dp1[MAX],dp2[MAX],dp3[MAX];
    11 int main()
    12 {
    13     while(~scanf("%d %d",&N,&M))
    14     {
    15         for(int i=1;i<=N;i++)
    16             scanf("%d",&a[i]);
    17         for(int i =1;i<=N;i++)
    18             scanf("%d",&num[i]);
    19 
    20         for(int i=1;i<=MAX;i++)
    21             dp1[i]=dp2[i]=MAX*1000;
    22         dp1[0]=dp2[0]=0;
    23         for(int i=1;i<=N;i++)
    24         {
    25             memset(dp3,0,sizeof(dp3));
    26             for(int j=a[i];j<=MAX;j++)
    27             {
    28                 if(dp1[j]>dp1[j-a[i]]+1&&dp3[j-a[i]]<num[i])
    29                 {
    30                     dp1[j] = dp1[j-a[i]]+1;
    31                     dp3[j] =dp3[j-a[i]] +1;
    32                 }
    33                 dp2[j] = min(dp2[j],dp2[j-a[i]]+1);
    34             }
    35         }
    36 
    37         int minx=MAX*1000;
    38         for(int i = M;i<=MAX;i++)
    39         {
    40             minx = min(minx,dp1[i]+dp2[i-M]);
    41         }
    42         if(minx>=MAX*1000)
    43             printf("-1
    ");
    44         else
    45             printf("%d
    ",minx);
    46 
    47 
    48     }
    49 
    50     return 0;
    51 }



  • 相关阅读:
    Ansible命令介绍之ansible
    Ansible命令介绍
    Ansible配置文件讲解
    博客搬家。新博客地址 http://fangjian0423.github.io/
    SpringMVC源码分析系列
    MyBatis拦截器原理探究
    通过源码分析MyBatis的缓存
    ThreadLocal原理及其实际应用
    logstash搭建日志追踪系统
    Mybatis解析动态sql原理分析
  • 原文地址:https://www.cnblogs.com/a2985812043/p/7375671.html
Copyright © 2011-2022 走看看