zoukankan      html  css  js  c++  java
  • Python3---标准库---numpy

    前言

    该文章描述标准库numpy库作用以及学习方法。

    2020-02-16

    天象独行

      python 库是一大特点,当然因为有很多的库,我们也不可能没有都学习,那么我们该如何自学这些库呢?有人可能说了百度阿。对对对,其实在python安装之后,一些库的操作方法也是有的。一般情况我们可以使用help()函数来查看使用方法,dir()函数来查看对象中包含的方法。下面我们就来看看。

    •   查看numpy的描述
    help(numpy)
    
    Help on package numpy:
    
    NAME
        numpy
    
    DESCRIPTION
        NumPy
        =====
        
        Provides
          1. An array object of arbitrary homogeneous items
          2. Fast mathematical operations over arrays
          3. Linear Algebra, Fourier Transforms, Random Number Generation

    1. 任意同构项的数组对象

    2. 快速数学运算数组

    3. 线性代数,傅里叶变换,随机数生成

    •   查看numpy库中的方法:
    >>> dir(numpy)
    ['ALLOW_THREADS', 'AxisError', 'BUFSIZE', 'CLIP', 'ComplexWarning', 'DataSource', 'ERR_CALL', 'ERR_DEFAULT', 'ERR_IGNORE', 'ERR_LOG', 'ERR_PRINT', 'ERR_RAISE', 'ERR_WARN', 'FLOATING_POINT_SUPPORT', 'FPE_DIVIDEBYZERO', 'FPE_INVALID', 'FPE_OVERFLOW', 'FPE_UNDERFLOW', 'False_', 'Inf', 'Infinity', 'MAXDIMS', 'MAY_SHARE_BOUNDS', 'MAY_SHARE_EXACT', 'MachAr', 'ModuleDeprecationWarning', 'NAN', 'NINF', 'NZERO', 'NaN', 'PINF', 'PZERO', 'RAISE', 'RankWarning', 'SHIFT_DIVIDEBYZERO', 'SHIFT_INVALID', 'SHIFT_OVERFLOW', 'SHIFT_UNDERFLOW', 'ScalarType', 'Tester', 'TooHardError', 'True_', 'UFUNC_BUFSIZE_DEFAULT', 'UFUNC_PYVALS_NAME', 'VisibleDeprecationWarning', 'WRAP', '_NoValue', '_UFUNC_API', '__NUMPY_SETUP__', '__all__', '__builtins__', '__cached__', '__config__', '__doc__', '__file__', '__git_revision__', '__loader__', '__name__', '__package__', '__path__', '__spec__', '__version__', '_add_newdoc_ufunc', '_distributor_init', '_globals', '_mat', '_pytesttester', 'abs', 'absolute', 'absolute_import', 'add', 'add_docstring', 'add_newdoc', 'add_newdoc_ufunc', 'alen', 'all', 'allclose', 'alltrue', 'amax', 'amin', 'angle', 'any', 'append', 'apply_along_axis', 'apply_over_axes', 'arange', 'arccos', 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctan2', 'arctanh', 'argmax', 'argmin', 'argpartition', 'argsort', 'argwhere', 'around', 'array', 'array2string', 'array_equal', 'array_equiv', 'array_repr', 'array_split', 'array_str', 'asanyarray', 'asarray', 'asarray_chkfinite', 'ascontiguousarray', 'asfarray', 'asfortranarray', 'asmatrix', 'asscalar', 'atleast_1d', 'atleast_2d', 'atleast_3d', 'average', 'bartlett', 'base_repr', 'binary_repr', 'bincount', 'bitwise_and', 'bitwise_not', 'bitwise_or', 'bitwise_xor', 'blackman', 'block', 'bmat', 'bool', 'bool8', 'bool_', 'broadcast', 'broadcast_arrays', 'broadcast_to', 'busday_count', 'busday_offset', 'busdaycalendar', 'byte', 'byte_bounds', 'bytes0', 'bytes_', 'c_', 'can_cast', 'cast', 'cbrt', 'cdouble', 'ceil', 'cfloat', 'char', 'character', 'chararray', 'choose', 'clip', 'clongdouble', 'clongfloat', 'column_stack', 'common_type', 'compare_chararrays', 'compat', 'complex', 'complex128', 'complex256', 'complex64', 'complex_', 'complexfloating', 'compress', 'concatenate', 'conj', 'conjugate', 'convolve', 'copy', 'copysign', 'copyto', 'core', 'corrcoef', 'correlate', 'cos', 'cosh', 'count_nonzero', 'cov', 'cross', 'csingle', 'ctypeslib', 'cumprod', 'cumproduct', 'cumsum', 'datetime64', 'datetime_as_string', 'datetime_data', 'deg2rad', 'degrees', 'delete', 'deprecate', 'deprecate_with_doc', 'diag', 'diag_indices', 'diag_indices_from', 'diagflat', 'diagonal', 'diff', 'digitize', 'disp', 'divide', 'division', 'divmod', 'dot', 'double', 'dsplit', 'dstack', 'dtype', 'e', 'ediff1d', 'einsum', 'einsum_path', 'emath', 'empty', 'empty_like', 'equal', 'errstate', 'euler_gamma', 'exp', 'exp2', 'expand_dims', 'expm1', 'extract', 'eye', 'fabs', 'fastCopyAndTranspose', 'fft', 'fill_diagonal', 'find_common_type', 'finfo', 'fix', 'flatiter', 'flatnonzero', 'flexible', 'flip', 'fliplr', 'flipud', 'float', 'float128', 'float16', 'float32', 'float64', 'float_', 'float_power', 'floating', 'floor', 'floor_divide', 'fmax', 'fmin', 'fmod', 'format_float_positional', 'format_float_scientific', 'format_parser', 'frexp', 'frombuffer', 'fromfile', 'fromfunction', 'fromiter', 'frompyfunc', 'fromregex', 'fromstring', 'full', 'full_like', 'fv', 'gcd', 'generic', 'genfromtxt', 'geomspace', 'get_array_wrap', 'get_include', 'get_printoptions', 'getbufsize', 'geterr', 'geterrcall', 'geterrobj', 'gradient', 'greater', 'greater_equal', 'half', 'hamming', 'hanning', 'heaviside', 'histogram', 'histogram2d', 'histogram_bin_edges', 'histogramdd', 'hsplit', 'hstack', 'hypot', 'i0', 'identity', 'iinfo', 'imag', 'in1d', 'index_exp', 'indices', 'inexact', 'inf', 'info', 'infty', 'inner', 'insert', 'int', 'int0', 'int16', 'int32', 'int64', 'int8', 'int_', 'int_asbuffer', 'intc', 'integer', 'interp', 'intersect1d', 'intp', 'invert', 'ipmt', 'irr', 'is_busday', 'isclose', 'iscomplex', 'iscomplexobj', 'isfinite', 'isfortran', 'isin', 'isinf', 'isnan', 'isnat', 'isneginf', 'isposinf', 'isreal', 'isrealobj', 'isscalar', 'issctype', 'issubclass_', 'issubdtype', 'issubsctype', 'iterable', 'ix_', 'kaiser', 'kron', 'lcm', 'ldexp', 'left_shift', 'less', 'less_equal', 'lexsort', 'lib', 'linalg', 'linspace', 'little_endian', 'load', 'loads', 'loadtxt', 'log', 'log10', 'log1p', 'log2', 'logaddexp', 'logaddexp2', 'logical_and', 'logical_not', 'logical_or', 'logical_xor', 'logspace', 'long', 'longcomplex', 'longdouble', 'longfloat', 'longlong', 'lookfor', 'ma', 'mafromtxt', 'mask_indices', 'mat', 'math', 'matmul', 'matrix', 'matrixlib', 'max', 'maximum', 'maximum_sctype', 'may_share_memory', 'mean', 'median', 'memmap', 'meshgrid', 'mgrid', 'min', 'min_scalar_type', 'minimum', 'mintypecode', 'mirr', 'mod', 'modf', 'moveaxis', 'msort', 'multiply', 'nan', 'nan_to_num', 'nanargmax', 'nanargmin', 'nancumprod', 'nancumsum', 'nanmax', 'nanmean', 'nanmedian', 'nanmin', 'nanpercentile', 'nanprod', 'nanquantile', 'nanstd', 'nansum', 'nanvar', 'nbytes', 'ndarray', 'ndenumerate', 'ndfromtxt', 'ndim', 'ndindex', 'nditer', 'negative', 'nested_iters', 'newaxis', 'nextafter', 'nonzero', 'not_equal', 'nper', 'npv', 'numarray', 'number', 'obj2sctype', 'object', 'object0', 'object_', 'ogrid', 'oldnumeric', 'ones', 'ones_like', 'outer', 'packbits', 'pad', 'partition', 'percentile', 'pi', 'piecewise', 'place', 'pmt', 'poly', 'poly1d', 'polyadd', 'polyder', 'polydiv', 'polyfit', 'polyint', 'polymul', 'polynomial', 'polysub', 'polyval', 'positive', 'power', 'ppmt', 'print_function', 'printoptions', 'prod', 'product', 'promote_types', 'ptp', 'put', 'put_along_axis', 'putmask', 'pv', 'quantile', 'r_', 'rad2deg', 'radians', 'random', 'rank', 'rate', 'ravel', 'ravel_multi_index', 'real', 'real_if_close', 'rec', 'recarray', 'recfromcsv', 'recfromtxt', 'reciprocal', 'record', 'remainder', 'repeat', 'require', 'reshape', 'resize', 'result_type', 'right_shift', 'rint', 'roll', 'rollaxis', 'roots', 'rot90', 'round', 'round_', 'row_stack', 's_', 'safe_eval', 'save', 'savetxt', 'savez', 'savez_compressed', 'sctype2char', 'sctypeDict', 'sctypeNA', 'sctypes', 'searchsorted', 'select', 'set_numeric_ops', 'set_printoptions', 'set_string_function', 'setbufsize', 'setdiff1d', 'seterr', 'seterrcall', 'seterrobj', 'setxor1d', 'shape', 'shares_memory', 'short', 'show_config', 'sign', 'signbit', 'signedinteger', 'sin', 'sinc', 'single', 'singlecomplex', 'sinh', 'size', 'sometrue', 'sort', 'sort_complex', 'source', 'spacing', 'split', 'sqrt', 'square', 'squeeze', 'stack', 'std', 'str', 'str0', 'str_', 'string_', 'subtract', 'sum', 'swapaxes', 'sys', 'take', 'take_along_axis', 'tan', 'tanh', 'tensordot', 'test', 'testing', 'tile', 'timedelta64', 'trace', 'tracemalloc_domain', 'transpose', 'trapz', 'tri', 'tril', 'tril_indices', 'tril_indices_from', 'trim_zeros', 'triu', 'triu_indices', 'triu_indices_from', 'true_divide', 'trunc', 'typeDict', 'typeNA', 'typecodes', 'typename', 'ubyte', 'ufunc', 'uint', 'uint0', 'uint16', 'uint32', 'uint64', 'uint8', 'uintc', 'uintp', 'ulonglong', 'unicode', 'unicode_', 'union1d', 'unique', 'unpackbits', 'unravel_index', 'unsignedinteger', 'unwrap', 'ushort', 'vander', 'var', 'vdot', 'vectorize', 'version', 'void', 'void0', 'vsplit', 'vstack', 'warnings', 'where', 'who', 'zeros', 'zeros_like']
    >>> 
    •   查看numpy库中指定方法的使用:
    Help on built-in function array in module numpy:
    
    array(...)
        array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0)
        
        Create an array.
        
        Parameters
        ----------
        object : array_like
            An array, any object exposing the array interface, an object whose
            __array__ method returns an array, or any (nested) sequence.
        dtype : data-type, optional
            The desired data-type for the array.  If not given, then the type will
            be determined as the minimum type required to hold the objects in the
            sequence.  This argument can only be used to 'upcast' the array.  For
            downcasting, use the .astype(t) method.
        copy : bool, optional
            If true (default), then the object is copied.  Otherwise, a copy will
            only be made if __array__ returns a copy, if obj is a nested sequence,
            or if a copy is needed to satisfy any of the other requirements
            (`dtype`, `order`, etc.).
        order : {'K', 'A', 'C', 'F'}, optional
    newly created array will be in C order (row major) unless 'F' is
            specified, in which case it will be in Fortran order (column major).
            If object is an array the following holds.
        
            ===== ========= ===================================================
            order  no copy                     copy=True
            ===== ========= ===================================================
            'K'   unchanged F & C order preserved, otherwise most similar order
            'A'   unchanged F order if input is F and not C, otherwise C order
            'C'   C order   C order
            'F'   F order   F order
            ===== ========= ===================================================
        
            When ``copy=False`` and a copy is made for other reasons, the result is
            the same as if ``copy=True``, with some exceptions for `A`, see the
            Notes section. The default order is 'K'.
        subok : bool, optional
            If True, then sub-classes will be passed-through, otherwise
            the returned array will be forced to be a base-class array (default).
        ndmin : int, optional
            Specifies the minimum number of dimensions that the resulting
            array should have.  Ones will be pre-pended to the shape as
            needed to meet this requirement.
     Returns
        -------
        out : ndarray
            An array object satisfying the specified requirements.
        
        See Also
        --------
        empty_like : Return an empty array with shape and type of input.
        ones_like : Return an array of ones with shape and type of input.
        zeros_like : Return an array of zeros with shape and type of input.
        full_like : Return a new array with shape of input filled with value.
        empty : Return a new uninitialized array.
        ones : Return a new array setting values to one.
        zeros : Return a new array setting values to zero.
        full : Return a new array of given shape filled with value.
        
        
        Notes
        -----
        When order is 'A' and `object` is an array in neither 'C' nor 'F' order,
        and a copy is forced by a change in dtype, then the order of the result is
        not necessarily 'C' as expected. This is likely a bug.
        
    ....................................
  • 相关阅读:
    【转】以太坊分片:Overview and Finality
    Raiden Network — Ethereum 区块链支付通道
    ERC 和 EIP 代表什么呢?
    【转】什么是加密经济学
    Ethereum Probabilistic Micropayments
    【转】以太坊钱包分析与介绍
    【转】用Python从零开始创建区块链
    【转】用 Go 构建一个区块链
    通用权限管理系统组件 (GPM
    通用权限管理系统组件 (GPM
  • 原文地址:https://www.cnblogs.com/aaron456-rgv/p/12318294.html
Copyright © 2011-2022 走看看