zoukankan      html  css  js  c++  java
  • 创建Tensor

    创建Tensor

    * from numpy, list
    * zeros, ones, fill
    * random  # if big dimension, random initial
    * constant
    * Application
    

    numpy, list

    numpy

    import numpy as np
    import tensorflow as tf
    

    tf.convert_to_tensor(np.ones([2, 3]))

    <tf.Tensor: id=0, shape=(2, 3), dtype=float64, numpy=
    array([[1., 1., 1.],
           [1., 1., 1.]])>
    
    tf.convert_to_tensor(np.zeros([2, 3]))
    
    <tf.Tensor: id=2, shape=(2, 3), dtype=float64, numpy=
    array([[0., 0., 0.],
           [0., 0., 0.]])>
    

    list

    tf.convert_to_tensor([1, 2])
    
    <tf.Tensor: id=4, shape=(2,), dtype=int32, numpy=array([1, 2], dtype=int32)>
    
    tf.convert_to_tensor([1, 2.])
    
    <tf.Tensor: id=6, shape=(2,), dtype=float32, numpy=array([1., 2.], dtype=float32)>
    
    tf.convert_to_tensor([[1], [2.]])
    
    <tf.Tensor: id=8, shape=(2, 1), dtype=float32, numpy=
    array([[1.],
           [2.]], dtype=float32)>
    

    zeros, ones, fill

    zeros

    tf.zeros([])
    
    <tf.Tensor: id=10, shape=(), dtype=float32, numpy=0.0>
    
    tf.zeros([1])
    
    <tf.Tensor: id=14, shape=(1,), dtype=float32, numpy=array([0.], dtype=float32)>
    
    tf.zeros([2, 2])
    
    <tf.Tensor: id=18, shape=(2, 2), dtype=float32, numpy=
    array([[0., 0.],
           [0., 0.]], dtype=float32)>
    
    tf.zeros([2, 3, 3])
    
    <tf.Tensor: id=22, shape=(2, 3, 3), dtype=float32, numpy=
    array([[[0., 0., 0.],
            [0., 0., 0.],
            [0., 0., 0.]],
    
       [[<span class="hljs-number">0</span><span class="hljs-string">.</span>, <span class="hljs-number">0</span><span class="hljs-string">.</span>, <span class="hljs-number">0</span><span class="hljs-string">.</span>],
        [<span class="hljs-number">0</span><span class="hljs-string">.</span>, <span class="hljs-number">0</span><span class="hljs-string">.</span>, <span class="hljs-number">0</span><span class="hljs-string">.</span>],
        [<span class="hljs-number">0</span><span class="hljs-string">.</span>, <span class="hljs-number">0</span><span class="hljs-string">.</span>, <span class="hljs-number">0</span><span class="hljs-string">.</span>]]<span class="hljs-string">],</span> <span class="hljs-string">dtype=float32)&gt;</span>
    

    a = tf.constant([0])
    tf.zeros_like(a)  # 等同于tf.zeros(a.shape)
    
    <tf.Tensor: id=25, shape=(1,), dtype=int32, numpy=array([0], dtype=int32)>
    

    ones

    tf.ones(1)
    
    <tf.Tensor: id=29, shape=(1,), dtype=float32, numpy=array([1.], dtype=float32)>
    
    tf.ones([])
    
    <tf.Tensor: id=31, shape=(), dtype=float32, numpy=1.0>
    
    tf.ones([2])
    
    <tf.Tensor: id=35, shape=(2,), dtype=float32, numpy=array([1., 1.], dtype=float32)>
    
    tf.ones([2, 3])
    
    <tf.Tensor: id=39, shape=(2, 3), dtype=float32, numpy=
    array([[1., 1., 1.],
           [1., 1., 1.]], dtype=float32)>
    
    a = tf.constant([0])
    tf.ones_like(a)  # # 等同于tf.ones(a.shape)
    
    <tf.Tensor: id=44, shape=(1,), dtype=int32, numpy=array([1], dtype=int32)>
    

    fill

    tf.fill([2, 2], 0)
    
    <tf.Tensor: id=48, shape=(2, 2), dtype=int32, numpy=
    array([[0, 0],
           [0, 0]], dtype=int32)>
    
    tf.fill([2, 2], 0)
    
    <tf.Tensor: id=52, shape=(2, 2), dtype=int32, numpy=
    array([[0, 0],
           [0, 0]], dtype=int32)>
    
    tf.fill([2, 2], 1)
    
    <tf.Tensor: id=56, shape=(2, 2), dtype=int32, numpy=
    array([[1, 1],
           [1, 1]], dtype=int32)>
    
    tf.fill([2, 2], 9)
    
    <tf.Tensor: id=60, shape=(2, 2), dtype=int32, numpy=
    array([[9, 9],
           [9, 9]], dtype=int32)>
    

    random

    # 正态分布,均值为1,方差为1
    tf.random.normal([2, 2], mean=1, stddev=1)
    
    <tf.Tensor: id=67, shape=(2, 2), dtype=float32, numpy=
    array([[1.0804566, 0.9318387],
           [1.0620257, 0.6907253]], dtype=float32)>
    
    tf.random.normal([2, 2])
    
    <tf.Tensor: id=74, shape=(2, 2), dtype=float32, numpy=
    array([[-0.06452972,  0.05704789],
           [ 0.82857376,  0.71619517]], dtype=float32)>
    
    # 截断的正态分布,
    tf.random.truncated_normal([2, 2], mean=0, stddev=1)
    
    <tf.Tensor: id=81, shape=(2, 2), dtype=float32, numpy=
    array([[ 0.19161457, -0.820383  ],
           [ 0.43668088, -0.3798696 ]], dtype=float32)>
    

    如下图所示为截断正态分布,截掉红色部分,对新的正态分布重新采样。因为sigmoid的和新的正态分布不冲突的地方的区域,对于sigmoid函数来说是*似于*滑的直线,梯度为0,因此会有梯度消失。

    截断正态分布.jpg

    # 均匀分布
    tf.random.uniform([2, 2], minval=0, maxval=1)
    
    <tf.Tensor: id=89, shape=(2, 2), dtype=float32, numpy=
    array([[0.01481438, 0.15071952],
           [0.5599004 , 0.59821343]], dtype=float32)>
    
    tf.random.uniform([2, 2], minval=0, maxval=100, dtype=tf.int32)
    
    <tf.Tensor: id=102, shape=(2, 2), dtype=int32, numpy=
    array([[51,  9],
           [10, 14]], dtype=int32)>
    

    打乱idx后,a和b的索引不变

    idx = tf.range(10)
    idx = tf.random.shuffle(idx)
    idx
    
    <tf.Tensor: id=113, shape=(10,), dtype=int32, numpy=array([0, 8, 4, 9, 6, 7, 5, 2, 1, 3], dtype=int32)>
    
    a = tf.random.normal([10, 784])
    b = tf.random.uniform([10], maxval=10, dtype=tf.int32)
    b
    
    <tf.Tensor: id=134, shape=(10,), dtype=int32, numpy=array([1, 8, 1, 2, 4, 6, 2, 7, 4, 5], dtype=int32)>
    
    a = tf.gather(a, idx)
    b = tf.gather(b, idx)
    b
    
    <tf.Tensor: id=147, shape=(10,), dtype=int32, numpy=array([1, 8, 2, 2, 6, 1, 7, 4, 4, 5], dtype=int32)>
    

    constant

    tf.constant(1)
    
    <tf.Tensor: id=149, shape=(), dtype=int32, numpy=1>
    
    tf.constant([1])
    
    <tf.Tensor: id=151, shape=(1,), dtype=int32, numpy=array([1], dtype=int32)>
    
    tf.constant([1, 2.])
    
    <tf.Tensor: id=153, shape=(2,), dtype=float32, numpy=array([1., 2.], dtype=float32)>
    
    tf.constant([[1, 2], [3., 2]])
    
    <tf.Tensor: id=156, shape=(2, 2), dtype=float32, numpy=
    array([[1., 2.],
           [3., 2.]], dtype=float32)>
    

    loss计算

    无bias的loss

    out = tf.random.uniform([4, 10])
    out
    
    <tf.Tensor: id=171, shape=(4, 10), dtype=float32, numpy=
    array([[0.67733276, 0.2267617 , 0.21761227, 0.28679788, 0.68864655,
            0.21349418, 0.5646602 , 0.8294822 , 0.22094071, 0.20246148],
           [0.7940483 , 0.86402774, 0.78399694, 0.80085063, 0.01357341,
            0.11889946, 0.89162886, 0.755934  , 0.8058628 , 0.40188062],
           [0.115659  , 0.30951428, 0.39866602, 0.5358803 , 0.9163326 ,
            0.47557557, 0.9397205 , 0.3110628 , 0.49839914, 0.34321547],
           [0.5563061 , 0.78829396, 0.52705276, 0.29077685, 0.35033226,
            0.9630101 , 0.338771  , 0.6301584 , 0.7393383 , 0.7073529 ]],
          dtype=float32)>
    
    y = tf.range(4)
    y = tf.one_hot(y, depth=10)
    y
    
    <tf.Tensor: id=188, shape=(4, 10), dtype=float32, numpy=
    array([[1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
           [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],
           [0., 0., 1., 0., 0., 0., 0., 0., 0., 0.],
           [0., 0., 0., 1., 0., 0., 0., 0., 0., 0.]], dtype=float32)>
    
    loss = tf.keras.losses.mse(y, out)
    loss
    
    <tf.Tensor: id=195, shape=(4,), dtype=float32, numpy=array([0.19016443, 0.4096697 , 0.31698173, 0.43206215], dtype=float32)>
    
    loss = tf.reduce_mean(loss)
    loss
    
    <tf.Tensor: id=200, shape=(), dtype=float32, numpy=0.3372195>
  • 相关阅读:
    脏数据
    LeetCode之Sort List
    COCOS2D-X FRAME动画创作随笔
    基于OpenCV性别识别
    Twitter 新一代流处理工具——Heron 该纸币Storm Limitations
    oracle设备
    苏州面对公司发布
    Weblogic监控指标
    mysql TIME_WAIT
    weblogic监控
  • 原文地址:https://www.cnblogs.com/abdm-989/p/14123193.html
Copyright © 2011-2022 走看看