zoukankan      html  css  js  c++  java
  • hdu 6315 Naive Operations

    Naive Operations

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 502768/502768 K (Java/Others)
    Total Submission(s): 853    Accepted Submission(s): 318


     

    Problem Description

    In a galaxy far, far away, there are two integer sequence a and b of length n.
    b is a static permutation of 1 to n. Initially a is filled with zeroes.
    There are two kind of operations:
    1. add l r: add one for al,al+1...ar
    2. query l r: query ∑ri=l⌊ai/bi⌋

     

    Input

    There are multiple test cases, please read till the end of input file.
    For each test case, in the first line, two integers n,q, representing the length of a,b and the number of queries.
    In the second line, n integers separated by spaces, representing permutation b.
    In the following q lines, each line is either in the form 'add l r' or 'query l r', representing an operation.
    1≤n,q≤100000, 1≤l≤r≤n, there're no more than 5 test cases.

     

    Output

    Output the answer for each 'query', each one line.

     

    Sample Input

    
     

    5 12 1 5 2 4 3 add 1 4 query 1 4 add 2 5 query 2 5 add 3 5 query 1 5 add 2 4 query 1 4 add 2 5 query 2 5 add 2 2 query 1 5

     

    Sample Output

    
     

    1 1 2 4 4 6

     

    Source

    2018 Multi-University Training Contest 2

     

    Recommend

    chendu   |   We have carefully selected several similar problems for you:  6318 6317 6316 6315 6314 

     

    Statistic | Submit | Discuss | Note
     

    思路:

    维护一个区间 a 的最大值,b的最小值,用一个lazy来标记区间增加过的次数,当maxa<minb就可以不用向下更新了。

    具体细节 当更新到单点并且 maxa >= minb 时,区间答案加一,minb+=b[l] 

    其他基本是线段树板子。

    代码如下:

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn=1e5+10;
    struct node{
        int l,r,fg,miv,mav,s;
    }tr[maxn<<2];
    int n,m,b[maxn],l,r;
    char s[20];
    
    void pushup(int i){
        tr[i].miv=min(tr[i<<1].miv,tr[i<<1|1].miv);
        tr[i].s=tr[i<<1].s+tr[i<<1|1].s;
        tr[i].mav=max(tr[i<<1].mav,tr[i<<1|1].mav);
    }
    void pushdown(int i){
        if(tr[i].fg){
            tr[i<<1].fg+=tr[i].fg;
            tr[i<<1|1].fg+=tr[i].fg;
            tr[i<<1].mav+=tr[i].fg;
            tr[i<<1|1].mav+=tr[i].fg;
            tr[i].fg=0;
        }
    }
    void build(int l,int r,int i){
        tr[i].l=l,tr[i].r=r;
        tr[i].fg=0;
        if(l==r){
            tr[i].miv=b[l];
            tr[i].s=tr[i].mav=0;
            return;
        }
        int mid=l+r>>1;
        build(l,mid,i<<1);
        build(mid+1,r,i<<1|1);
        pushup(i);
    }
    void update(int l,int r,int i){
    //    printf("update %d %d %d %d %d
    ",l,r,tr[i].l,tr[i].r,i);
        if(l<=tr[i].l && tr[i].r<=r){
            tr[i].mav++;
            if(tr[i].mav<tr[i].miv){
                tr[i].fg++;
                return ;
            }
            if(tr[i].l==tr[i].r && tr[i].mav>=tr[i].miv){
                tr[i].s++;
                tr[i].miv+=b[tr[i].l];
                return ;
            }
        }
        pushdown(i);
        int mid=tr[i].l+tr[i].r>>1;
        if(l<=mid) update(l,r,i<<1);
        if(r>mid)  update(l,r,i<<1|1);
        pushup(i);
    }
    int Query(int l,int r,int i){
       if(l<=tr[i].l && tr[i].r<=r) return tr[i].s;
       pushdown(i);
       int ans=0,mid=tr[i].l+tr[i].r>>1;
       if(l<=mid) ans+=Query(l,r,i<<1);
       if(r>mid)  ans+=Query(l,r,i<<1|1);
       return ans;
    }
    
    int main(){
        while(scanf("%d%d",&n,&m)==2){
            for (int i=1; i<=n ;i++) scanf("%d",&b[i]);
            build(1,n,1);
            while(m--){
                scanf("%s%d%d",s,&l,&r);
                if(s[0]=='a') update(l,r,1);
                else printf("%d
    ",Query(l,r,1));
            }
        }
        return 0;
    }
    
  • 相关阅读:
    Liunx cal
    Liunx read
    IOS
    IOS
    ARPSpoofing教程(四)
    ARPSpoofing教程(三)
    ARPSpoofing教程(二)
    数据结构与算法分析
    hdu 2034
    hdu 2042
  • 原文地址:https://www.cnblogs.com/acerkoo/p/9490303.html
Copyright © 2011-2022 走看看