题意:给两个排列,2种操作1,查询两个区间a和b一样的值个数,2,交换b的两个值
题解:树套树,先把a变成1到n的排列,对b做相同的变换,然后问题就变成了查询区间lb,rb中la到ra的个数,带修改可以树状数组套主席树,需要内存回收
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 998244353
#define ld long double
//#define C 0.5772156649
//#define ls l,m,rt<<1
//#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define ull unsigned long long
//#define base 1000000000000000000
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
using namespace std;
const ull ba=233;
const db eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=200000+10,maxn=200000+10,inf=0x3f3f3f3f;
int n,m;
int q[N*150],top;
struct bit_seg{
int root[N],ls[N*150],rs[N*150],sum[N*150],res;
bit_seg(){res=0;}
void update(int &o,int pos,int v,int l,int r)
{
if(!o)
{
if(top)o=q[top--];
else o=++res;
}
sum[o]+=v;
if(l==r)return ;
int m=(l+r)>>1;
if(pos<=m)update(ls[o],pos,v,l,m);
else update(rs[o],pos,v,m+1,r);
if(!sum[o])q[++top]=o,o=0;
}
int query(int L,int R,int o,int l,int r)
{
if(!o)return 0;
if(L<=l&&r<=R)return sum[o];
int m=(l+r)>>1,ans=0;
if(L<=m)ans+=query(L,R,ls[o],l,m);
if(m<R)ans+=query(L,R,rs[o],m+1,r);
return ans;
}
int bitquery(int la,int ra,int lb,int rb)
{
int ans=0;
for(int i=rb;i;i-=i&(-i))ans+=query(la,ra,root[i],1,n);
for(int i=lb-1;i;i-=i&(-i))ans-=query(la,ra,root[i],1,n);
return ans;
}
void bitupdate(int i,int pos,int v)
{
for(;i<=n;i+=i&(-i))update(root[i],pos,v,1,n);
}
}s;
int a[N],b[N],c[N];
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%d",&a[i]),c[a[i]]=i;
for(int i=1;i<=n;i++)scanf("%d",&b[i]),b[i]=c[b[i]];
for(int i=1;i<=n;i++)s.bitupdate(i,b[i],1);
for(int i=1;i<=m;i++)
{
int op;scanf("%d",&op);
if(op==1)
{
int la,ra,lb,rb;scanf("%d%d%d%d",&la,&ra,&lb,&rb);
printf("%d
",s.bitquery(la,ra,lb,rb));
}
else
{
int x,y;scanf("%d%d",&x,&y);
s.bitupdate(x,b[x],-1);s.bitupdate(y,b[y],-1);
swap(b[x],b[y]);
s.bitupdate(x,b[x],1),s.bitupdate(y,b[y],1);
}
}
return 0;
}
/********************
********************/
平板电视的精简版
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#include <bits/extc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
//#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define ull unsigned long long
//#define base 1000000000000000000
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
using namespace std;
using namespace __gnu_pbds;
const ull ba=233;
const db eps=1e-6;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=200000+10,maxn=200000+10,inf=0x3f3f3f3f;
template <class T>
using Tree = tree<T, null_type, std::less<T>, rb_tree_tag,tree_order_statistics_node_update>;
int a[N],b[N],c[N],n,m;
struct bit{
Tree<int>t[N];
void update(int i,int pos,int v)
{
for(;i<=n;i+=i&(-i))
{
if(v==1)t[i].insert(pos);
else t[i].erase(pos);
}
}
int query(int la,int ra,int lb,int rb)
{
int ans=0;
for(int i=rb;i;i-=i&(-i))ans+=t[i].order_of_key(ra+1)-t[i].order_of_key(la);
for(int i=lb-1;i;i-=i&(-i))ans-=t[i].order_of_key(ra+1)-t[i].order_of_key(la);
return ans;
}
}bi;
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%d",&a[i]),c[a[i]]=i;
for(int i=1;i<=n;i++)scanf("%d",&b[i]),b[i]=c[b[i]],bi.update(i,b[i],1);
for(int i=1;i<=m;i++)
{
int op;scanf("%d",&op);
if(op==1)
{
int la,ra,lb,rb;scanf("%d%d%d%d",&la,&ra,&lb,&rb);
printf("%d
",bi.query(la,ra,lb,rb));
}
else
{
int x,y;scanf("%d%d",&x,&y);
bi.update(x,b[x],-1),bi.update(y,b[y],-1);
swap(b[x],b[y]);
bi.update(x,b[x],1),bi.update(y,b[y],1);
}
}
return 0;
}
/********************
********************/