zoukankan      html  css  js  c++  java
  • Codeforces Round #353 (Div. 2)

    A:水题

    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    //#pragma GCC optimize("unroll-loops")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define mod 1000000007
    #define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pil pair<int,ll>
    #define pii pair<int,int>
    #define ull unsigned long long
    #define base 1000000000000000000
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    
    using namespace std;
    
    const double g=10.0,eps=1e-12;
    const int N=100000+10,maxn=2000+10,inf=0x3f3f3f3f;
    
    
    int main()
    {
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        if(c==0)
        {
            if(a==b)puts("YES");
            else puts("NO");
            return 0;
        }
        if((b-a)%c==0)
        {
            if(a>=b&&c<=0)puts("YES");
            else if(a<=b&&c>=0)puts("YES");
            else puts("NO");
        }
        else puts("NO");
        return 0;
    }
    /********************
    
    ********************/
    A

    B:sb公式题,把公式列出来枚举即可

    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    //#pragma GCC optimize("unroll-loops")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define mod 1000000007
    #define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pil pair<int,ll>
    #define pii pair<int,int>
    #define ull unsigned long long
    #define base 1000000000000000000
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    
    using namespace std;
    
    const double g=10.0,eps=1e-12;
    const int N=100000+10,maxn=2000+10,inf=0x3f3f3f3f;
    
    
    int main()
    {
        ll n,a,b,c,d;
        scanf("%lld%lld%lld%lld%lld",&n,&a,&b,&c,&d);
        ll ans=n;
        ll te1=a+b,te2=a+c,te3=b+d,te4=c+d;
        ll te=max(te1,max(te2,max(te3,te4)))-min(te1,min(te2,min(te3,te4)));
        te=max(0ll,te);te=min(n,te);
        te=n-te;
        printf("%lld
    ",ans*te);
        return 0;
    }
    /********************
    
    ********************/
    B

    C:题意:给你n个数,每次能把一个数转移到隔壁,1和n是隔壁,要求最少几次能把每个数变成0

    题解:前缀和维护一下,前缀和相同就代表这一段区间和为0,那么就可以少转移一次,map维护一下瞎搞就行了

    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    //#pragma GCC optimize("unroll-loops")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define mod 1000000007
    #define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pil pair<int,ll>
    #define pii pair<int,int>
    #define ull unsigned long long
    #define base 1000000000000000000
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    
    using namespace std;
    
    const double g=10.0,eps=1e-12;
    const int N=100000+10,maxn=2000+10,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f;
    
    ll a[N],sum[N];
    map<ll,ll>ma;
    int main()
    {
        ll n;
        scanf("%lld",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%lld",&a[i]);
            sum[i]=sum[i-1]+a[i];
            ma[sum[i]]++;
        }
        ll ans=n-1;
        for(auto x:ma)ans=min(ans,n-x.se);
        printf("%lld
    ",max(0ll,ans));
        return 0;
    }
    /********************
    
    ********************/
    C

    D:题意:给你n个数,依次插入到二叉搜索树里,看每个点的父亲节点价值是多少

    题解:很明显不能模拟,退化成一条链 的时候复杂度O(N^2),所以我们需要用set来维护一下,当插入值是x时,前驱是l,后继是r,x要么是l的右儿子,要么是r的左儿子,,又因为l没有右儿子和r没有左儿子不能同时成立,所以找到另一个插入即可.set+upperbound即可

    黑体字的证明:假设l没有右儿子而且r没有左儿子,而且l,r不能是另一个的祖先(这样不满足假设),那么l,r的公共祖先为a,那么a要么是前驱,要么是后继,所以假设不成立

    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    //#pragma GCC optimize("unroll-loops")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define mod 1000000007
    #define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pil pair<int,ll>
    #define pii pair<int,int>
    #define ull unsigned long long
    #define base 1000000000000000000
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    
    using namespace std;
    
    const double g=10.0,eps=1e-12;
    const int N=100000+10,maxn=2000+10,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f;
    
    struct point{
        int v;
        mutable bool l,r;
        bool operator <(const point &rhs)const{
            return v<rhs.v;
        }
    }p[N];
    set<point>s;
    int main()
    {
        int n;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&p[i].v);
            p[i].l=p[i].r=0;
            if(i!=1)
            {
                auto te=s.upper_bound(p[i]);
                if(te==s.end())
                {
                    te--;
                    (*te).r=1;
                    printf("%d ",(*te).v);
                }
                else
                {
                    if((*te).l==0)
                    {
                        (*te).l=1;
                        printf("%d ",(*te).v);
                    }
                    else
                    {
                        te--;
                        (*te).r=1;
                        printf("%d ",(*te).v);
                    }
                }
            }
            s.insert(p[i]);
        }
        puts("");
        return 0;
    }
    /********************
    
    ********************/
    D

    E:题意:给你n个车站,从i到i+1~a[i]只需要一步,i到j的价值是最少需要走的步数μ(i,j),求每两个不相同的点的价值和

    题解:dp[i]表示∑(i<j<=n)μ(i,j),因为对于路径i,j,对于i<j<=a[i],为1,否则dis[i]=dis[a[m]]+1,m是i+1到a[i]中a[m]最大的,那么转移方程dp[i]=dp[m]+(n-i)-(a[i]-m),m的i+1到a[i]的a[m]最大值,这个可以用线段树维护

    仔细解释一下转移方程,dp[m]-(a[i]-m)就是要把m到a[i]的删掉,因为这个地方从dp[m]可以一步到达,而在dp[i]中也能一步到达,对于i到m的地方dp[i]一步能到达,对于a[i]+1到n的地方,我们可以从dp[m]+1步来到达,所以转移公式就是这么来的

    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    //#pragma GCC optimize("unroll-loops")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define mod 1000000007
    #define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pil pair<int,ll>
    #define pii pair<int,int>
    #define ull unsigned long long
    #define base 1000000000000000000
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    
    using namespace std;
    
    const double g=10.0,eps=1e-12;
    const int N=100000+10,maxn=2000+10,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f;
    
    int a[N];
    pair<ll,ll> maxx[N<<2];
    ll dp[N];
    void pushup(int rt)
    {
        if(maxx[rt<<1].fi>maxx[rt<<1|1].fi)
            maxx[rt]=maxx[rt<<1];
        else
            maxx[rt]=maxx[rt<<1|1];
    }
    void build(int l,int r,int rt)
    {
        if(l==r)
        {
            maxx[rt].fi=a[l];
            maxx[rt].se=l;
            return ;
        }
        int m=(l+r)>>1;
        build(ls);build(rs);
        pushup(rt);
    }
    pair<ll,ll> query(int L,int R,int l,int r,int rt)
    {
        if(L<=l&&r<=R)
            return maxx[rt];
        pair<ll,ll> ans,te;
        ans.fi=0;
        int m=(l+r)>>1;
        if(L<=m)
        {
            te=query(L,R,ls);
            if(ans.fi<te.fi)ans=te;
        }
        if(m<R)
        {
            te=query(L,R,rs);
            if(ans.fi<te.fi)ans=te;
        }
        return ans;
    }
    int main()
    {
        int n;
        scanf("%d",&n);
        for(int i=1;i<n;i++)scanf("%d",&a[i]);
        a[n]=n;
        build(1,n,1);
    //    for(int i=1;i<n;i++)cout<<query(i+1,a[i],1,n,1).se<<" ";
    //    cout<<endl;
        dp[n]=0;
        for(int i=n-1;i>=1;i--)
        {
            int te=query(i+1,a[i],1,n,1).se;
    //        printf("%d
    ",te);
            dp[i]=dp[te]+n-i-(a[i]-te);
        }
        ll ans=0;
        for(int i=1;i<=n;i++)
        {
    //        printf("%d ",dp[i]);
            ans+=dp[i];
        }
        printf("%lld
    ",ans);
        return 0;
    }
    /********************
    
    ********************/
    E
  • 相关阅读:
    MySQL学习笔记(12):触发器
    MySQL学习笔记(11):存储过程和函数
    MySQL学习笔记(10):视图
    MySQL学习笔记(9):索引
    MySQL学习笔记(8):字符集
    MySQL学习笔记(7):存储引擎
    MySQL学习笔记(6):常用函数
    MySQL学习笔记(5):运算符
    MySQL学习笔记(4):数据类型
    MySQL学习笔记(3):SQL
  • 原文地址:https://www.cnblogs.com/acjiumeng/p/8406550.html
Copyright © 2011-2022 走看看