zoukankan      html  css  js  c++  java
  • Codeforces Round #250 (Div. 1)E. The Child and Binary Tree

    题意:有一个集合,求有多少形态不同的二叉树满足每个点的权值都属于这个集合并且总点权等于i
    题解:先用生成函数搞出来(f(x)=f(x)^2*c(x)+1)
    然后转化一下变成(f(x)=frac{2}{1+sqrt{1-4*c(x)}})
    然后多项式开根和多项式求逆即可(先对下面的项开根,然后再求逆)
    多项式开根:
    (B(x)^2=A(x) mod x^{ lfloor frac{n}{2} floor})
    (B'(x)^2=A(x) mod x^{ lfloor frac{n}{2} floor})
    (B(x)^2-B'(x)^2equiv 0),((B(x)+B'(x))*(B(x)-B'(x))equiv 0),取(B(x)=B'(x))
    (B(x)^2-2*B(x)*B'(x)+B'(x)^2equiv0),
    (B(x)equiv frac{A(x)+B'(x)^2}{2*B'(x)})

    //#pragma GCC optimize(2)
    //#pragma GCC optimize(3)
    //#pragma GCC optimize(4)
    //#pragma GCC optimize("unroll-loops")
    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    #include<bits/stdc++.h>
    #define fi first
    #define se second
    #define db double
    #define mp make_pair
    #define pb push_back
    #define pi acos(-1.0)
    #define ll long long
    #define vi vector<int>
    #define mod 998244353
    #define ld long double
    #define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pll pair<ll,ll>
    #define pil pair<int,ll>
    #define pli pair<ll,int>
    #define pii pair<int,int>
    //#define cd complex<double>
    #define ull unsigned long long
    #define base 1000000000000000000
    #define Max(a,b) ((a)>(b)?(a):(b))
    #define Min(a,b) ((a)<(b)?(a):(b))
    #define fin freopen("a.txt","r",stdin)
    #define fout freopen("a.txt","w",stdout)
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    template<typename T>
    inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
    template<typename T>
    inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
    inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
    inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
    inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
    
    using namespace std;
    
    const double eps=1e-8;
    const ll INF=0x3f3f3f3f3f3f3f3f;
    const int N=100000+10,maxn=400000+10,inf=0x3f3f3f3f;
    
    ll a[N<<3],b[N<<3],c[N<<3],d[N<<3],tmp[N<<3],inv2=qp(2,mod-2);
    int rev[N<<3];
    void getrev(int bit)
    {
        for(int i=0;i<(1<<bit);i++)
            rev[i]=(rev[i>>1]>>1) | ((i&1)<<(bit-1));
    }
    void ntt(ll *a,int n,int dft)
    {
        for(int i=0;i<n;i++)
            if(i<rev[i])
                swap(a[i],a[rev[i]]);
        for(int step=1;step<n;step<<=1)
        {
            ll wn=qp(3,(mod-1)/(step*2));
            if(dft==-1)wn=qp(wn,mod-2);
            for(int j=0;j<n;j+=step<<1)
            {
                ll wnk=1;
                for(int k=j;k<j+step;k++)
                {
                    ll x=a[k];
                    ll y=wnk*a[k+step]%mod;
                    a[k]=(x+y)%mod;a[k+step]=(x-y+mod)%mod;
                    wnk=wnk*wn%mod;
                }
            }
        }
        if(dft==-1)
        {
            ll inv=qp(n,mod-2);
            for(int i=0;i<n;i++)a[i]=a[i]*inv%mod;
        }
    }
    void pol_inv(int deg,ll *a,ll *b)
    {
        if(deg==1){b[0]=qp(a[0],mod-2);return ;}
        pol_inv((deg+1)>>1,a,b);
        int sz=0;while((1<<sz)<=deg)sz++;
        getrev(sz);int len=1<<sz;
        for(int i=0;i<deg;i++)tmp[i]=a[i];
        for(int i=deg;i<len;i++)tmp[i]=0;
        ntt(tmp,len,1),ntt(b,len,1);
        for(int i=0;i<len;i++)
            b[i]=(2ll-tmp[i]*b[i]%mod+mod)%mod*b[i]%mod;
        ntt(b,len,-1);
        for(int i=deg;i<len;i++)b[i]=0;
    }
    void pol_sqrt(int deg,ll *a,ll *b)
    {
        if(deg==1){b[0]=1;return ;}
        pol_sqrt((deg+1)>>1,a,b);
        int sz=0;while((1<<sz)<=deg)sz++;
        getrev(sz);int len=1<<sz;
        for(int i=0;i<len;i++)d[i]=0;
        pol_inv(deg,b,d);
        for(int i=0;i<deg;i++)tmp[i]=a[i];
        for(int i=deg;i<len;i++)tmp[i]=0;
        ntt(tmp,len,1),ntt(b,len,1),ntt(d,len,1);
        for(int i=0;i<len;i++)
            b[i]=(tmp[i]*d[i]%mod+b[i])%mod*inv2%mod;
        ntt(b,len,-1);
        for(int i=deg;i<len;i++)b[i]=0;
    }
    int main()
    {
        int n,m;scanf("%d%d",&n,&m);
        for(int i=0,x;i<n;i++)
        {
            scanf("%d",&x);
            a[x]=mod-4;
        }
        a[0]=1;
        int len=1;while(len<=m)len<<=1;
        pol_sqrt(len,a,b);
        ++b[0];
        pol_inv(len,b,c);
        for(int i=1;i<=m;i++)printf("%lld
    ",c[i]*2%mod);
        return 0;
    }
    /********************
    
    ********************/
    
  • 相关阅读:
    以太坊测试网络搭建以及RPC服务开启-配置注意事项
    AD预测论文研读系列1
    DenseNet 论文阅读笔记
    Deep learning with Python 学习笔记(7)
    ADNI数据
    利用卷积神经网络进行阿尔茨海默病分类的神经影像模式融合 论文研读笔记
    阿尔茨海默病早期诊断的脑结构分级图 论文研读笔记
    GoogLeNetv4 论文研读笔记
    ResNet 论文研读笔记
    GoogLeNetv3 论文研读笔记
  • 原文地址:https://www.cnblogs.com/acjiumeng/p/9526236.html
Copyright © 2011-2022 走看看