import numpy as np import tensorflow as tf #build a graph print("build a graph") #生产变量tensor a=tf.constant([[1,2],[3,4]]) b=tf.constant([[1,1],[0,1]]) #获取tensor的数据类型和张量维度 print("a.dtype",a.dtype) print(a.get_shape()) print("type of a:",type(a)) #基本的数据运算 c=tf.matmul(a,b) d=tf.subtract(a,b) e=tf.add(a,b) print("a:",a) print("b:",b) #construct a 'Session' to excute the graph sess=tf.Session() # Execute the graph and store the value that `c` represents in `result`. print("excuted in Session") result_a=sess.run(a) result_a2=a.eval(session=sess) print("result_a: ",result_a) print("result_a2: ",result_a2) result_b=sess.run(b) print("result_b: ",result_b) result_c=sess.run(c) print("result_c: ",result_c) result_d=sess.run(d) print("result_d: ",result_d) result_e=sess.run(e) print("result_e: ",result_e)
#Tensors常量值函数
tf.zeros(shape, dtype=tf.float32, name=None)
tf.zeros_like(tensor, dtype=None, name=None)
tf.ones(shape, dtype=tf.float32, name=None)
tf.ones_like(tensor, dtype=None, name=None)
tf.fill(dims, value, name=None)
tf.constant(value, dtype=None, shape=None, name='Const')