zoukankan      html  css  js  c++  java
  • HDU1711 Number Sequence(KMP模板题)

    Number Sequence
    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 40053    Accepted Submission(s): 16510


    Problem Description
    Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.

    Input
    The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].

    Output
    For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.

    Sample Input
    2
    13 5
    1 2 1 2 3 1 2 3 1 3 2 1 2
    1 2 3 1 3
    13 5
    1 2 1 2 3 1 2 3 1 3 2 1 2
    1 2 3 2 1
     

    Sample Output
    6
    -1

    #include<iostream>
    #include<string.h>
    using namespace std;
    int tt,pp;
    int t[1000011],p[11111],next1[11111];
    void getnext()
    {
        int i=0,j=-1;
        next1[0]=-1;
        while(i<pp-1)
        {
            if(j==-1||p[i]==p[j])
                next1[++i]=++j;
            else
                j=next1[j];
        }
        return;
    }
    int kmp()
    {
        int i=0,j=0;
        while(i<tt)
        {
            if(j==-1||t[i]==p[j])
                i++,j++;
            else
                j=next1[j];
            if(j==pp)
                return i-j+1;
        }
        return -1;
    }
    int main()
    {
        int n;
        scanf("%d",&n);
        while(n--)
        {
            scanf("%d%d",&tt,&pp);
            for(int i=0;i<tt;i++)
                scanf("%d",&t[i]);
            for(int i=0;i<pp;i++)
                scanf("%d",&p[i]);
            getnext();
            printf("%d
    ",kmp());
        }
        return 0;
    }
    
  • 相关阅读:
    Oc中UIKit框架的继承结构
    iOS中的事件传递和响应者链
    音频视频,音乐,录音参考资料
    对象序列化(对对象的归档NSKeyedArchiver、接档NSKeyedUnarchiver)的理解
    iOS--UI篇——UIToolbar的简单使用
    iOS--内购的使用方法
    协调-分布式锁
    协调-协调架构原理
    协调-分布式配置
    队列-生产者消费者模式
  • 原文地址:https://www.cnblogs.com/aeipyuan/p/9502679.html
Copyright © 2011-2022 走看看