zoukankan      html  css  js  c++  java
  • POJ 3468 A Simple Problem with Integers(线段树区间修改及查询)

    Description

    You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval.

    The other is to ask for the sum of numbers in a given interval.

    Input

    The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
    The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
    Each of the next Q lines represents an operation.
    "C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
    "Q a b" means querying the sum of Aa, Aa+1, ... , Ab.

    Output

    You need to answer all Q commands in order. One answer in a line.

    Sample Input

    10 5
    1 2 3 4 5 6 7 8 9 10
    Q 4 4
    Q 1 10
    Q 2 4
    C 3 6 3
    Q 2 4
    

    Sample Output

    4
    55
    9
    15

    线段树区间查询的核心思想是Lazy原则,顾名思义,懒!!
    就是当修改某区间的值是,现将修改的值记录下来,暂不修改。
    此时如果查询区间与上一个修改区间没有交集,那么对结果也没有影响。我等用到这个修改过的区间的值时,再将它的值向下更新。
    而且只用向下更新一层,因为递归时我们是根据区间的位置情况连续向下找左右子节点的,所以只更新一层就行,更新多了没用(如果更新到底,就变成单点更新了,复杂度爆炸)

    代码如下:
      1 #include <cstdio>
      2 #include <algorithm>
      3 
      4 using namespace std;
      5 #define M 100005
      6 struct segTree
      7 {
      8     int l,r;
      9     long long int sum,add;
     10     int mid()
     11     {
     12         return (l+r)>>1;
     13     }
     14 }tree[M<<2];
     15 int n,m;
     16 void PushUp (int now)//向上更新:当前节点的sum等于其左右儿子的sum的和
     17 {
     18     tree[now].sum=tree[now<<1].sum+tree[now<<1|1].sum;
     19 }
     20 void buildTree (int now,int l,int r)
     21 {
     22     tree[now].l=l,tree[now].r=r;
     23     tree[now].add=0;
     24     if (l==r)
     25     {
     26         scanf("%lld",&tree[now].sum);
     27         return;
     28     }
     29     int m=tree[now].mid();
     30     buildTree(now<<1,l,m);//递归建树
     31     buildTree(now<<1|1,m+1,r);
     32     PushUp(now);//向上更新
     33 }
     34 void PushDown (int now,int m)
     35 //向下更新:当前节点的add值需要加到自己左右儿子的add与sum上
     36 {
     37     if (tree[now].add)
     38     {
     39         tree[now<<1].add+=tree[now].add;
     40         tree[now<<1|1].add+=tree[now].add;
     41         tree[now<<1].sum+=tree[now].add*(m-(m>>1));
     42         tree[now<<1|1].sum+=tree[now].add*(m>>1);
     43         tree[now].add=0;
     44     }
     45 }
     46 void UpDate (int now,int l,int r,int change)
     47 //区间[l,r]需要增加值change,now是当前节点
     48 {
     49 if (tree[now].l==l&&r==tree[now].r)
     50 //如果恰好now代表的区间就是更新的区间,一步更新,暂不向下继续更新到其子节点 ,等用到这个节点再向下更新
     51     {
     52         tree[now].add+=change;
     53         tree[now].sum+=(__int64)change*(r-l+1);
     54         return ;
     55     }
     56     if (tree[now].l==tree[now].r)
     57     return;//区间长度为1,return
     58 PushDown(now,tree[now].r-tree[now].l+1);
     59 //用到了当前节点,当前节点向下更新
     60     int m=tree[now].mid();
     61 if (r<=m)
     62 //==============|==============tree[now]的区间
     63 //    ********                 要更新的区间
     64     UpDate(now<<1,l,r,change);
     65 else if (l>m)
     66 //==============|==============tree[now]的区间
     67 //                  ********   要更新的区间
     68     UpDate(now<<1|1,l,r,change);
     69 else
     70 //==============|==============tree[now]的区间
     71 //         *************          要更新的区间
     72     {
     73         UpDate(now<<1,l,m,change);
     74         UpDate(now<<1|1,m+1,r,change);
     75     }
     76     PushUp(now);
     77 }
     78 long long int query (int now,int l,int r)
     79 {
     80     if(l==tree[now].l &&r==tree[now].r)
     81     {
     82         return tree[now].sum;
     83     }
     84     PushDown(now,tree[now].r-tree[now].l+1);//用到了当前节点,向下更新
     85     int m = tree[now].mid();
     86     long long int res = 0;
     87 if(r<=m)
     88 //==============|==============tree[now]的区间
     89 //    ********                 要查询的区间
     90 res += query(now<<1,l,r);
     91 else if(l > m)
     92 //==============|==============tree[now]的区间
     93 //                  ********   要查询的区间
     94 res += query(now<<1|1,l,r);
     95 //==============|==============tree[now]的区间
     96 //         *************          要更新的区间
     97     else
     98     {
     99        res+=query(now<<1,l,m);
    100        res+=query(now<<1|1,m+1,r);
    101     }
    102     return res;
    103 }
    104 int main()
    105 {
    106     //freopen("de.txt","r",stdin);
    107     while (~scanf("%d%d",&n,&m))
    108     {
    109         buildTree(1,1,n);
    110         while (m--)
    111         {
    112             char op[5];
    113             scanf("%s",op);
    114             int x,y,z;
    115             if (op[0]=='Q')
    116             {
    117                 scanf("%d%d",&x,&y);
    118                 printf("%lld
    ",query(1,x,y));
    119             }
    120             else
    121             {
    122                 scanf("%d%d%d",&x,&y,&z);
    123                 UpDate(1,x,y,z);
    124             }
    125         }
    126     }
    127     return 0;
    128 }
     
  • 相关阅读:
    近期简单题炸分总结
    传输层中的端口号
    TCP的三次握手与四次挥手
    ppq的面试题总结
    一个C++源文件从文本到可执行文件经历的过程
    C++中的&符号的运用:引用、取地址和右值引用
    C++中的拷贝构造、赋值构造函数
    C++中的虚函数
    函数指针与回调函数
    C++中的智能指针
  • 原文地址:https://www.cnblogs.com/agenthtb/p/5876415.html
Copyright © 2011-2022 走看看