zoukankan      html  css  js  c++  java
  • POJ1003 – Hangover (基础)

    Hangover
     

    Description

    How far can you make a stack of cards overhang a table? If you have one card, you can create a maximum overhang of half a card length. (We're assuming that the cards must be perpendicular to the table.) With two cards you can make the top card overhang the bottom one by half a card length, and the bottom one overhang the table by a third of a card length, for a total maximum overhang of 1/2 + 1/3 = 5/6 card lengths. In general you can make n cards overhang by 1/2 + 1/3 + 1/4 + ... + 1/(n + 1) card lengths, where the top card overhangs the second by 1/2, the second overhangs tha third by 1/3, the third overhangs the fourth by 1/4, etc., and the bottom card overhangs the table by 1/(n + 1). This is illustrated in the figure below.


    Input

    The input consists of one or more test cases, followed by a line containing the number 0.00 that signals the end of the input. Each test case is a single line containing a positive floating-point number c whose value is at least 0.01 and at most 5.20; c will contain exactly three digits.

    Output

    For each test case, output the minimum number of cards necessary to achieve an overhang of at least c card lengths. Use the exact output format shown in the examples.

    Sample Input

    1.00
    3.71
    0.04
    5.19
    0.00
    

    Sample Output

    3 card(s)
    61 card(s)
    1 card(s)
    273 card(s)

    Source

     
      根据题意可建立以下数学模型:
         令 ∑(1/n) >= c
         其中 n∈[2, ∞), c∈[0.01, 5.20]且其精度含小数在内最多3个数字
         给定c 求 n (若c在范围外,则不求解)
     
        分析:
         本质就是变种的调和数列求和(数列中缺少1)
         但调和数列是发散的,不存在准确的求和公式,只有近似公式:
          调和数列 ∑(1/n) ~ ln(n+1) + R
          其中 n∈[1, ∞), R为欧拉常数(R = 0.5772156649...)
     
         但近似公式只有在n非常大的时候误差才可以忽略不计,
         当n很小时,对本题而言误差是不可接受的。
     
         因此本题用常规解法即可
         (由于前n项和是固定的,用打表法也可, 不过题目考核范围较小,打表意义也不大) 

    #include <iostream>
    using namespace std;
     
    /* 
     * 根据调和数列的和值反求项数
     * @param sum 目标和值
     * return 调和数列项数
     */
    int harmonicSeries(double sum);
     
     
    int main(void) {
        double sum = 0.0;
        while(true) {
            cin >> sum;
            if(sum < 0.01 || sum > 5.20) {
                break;
            }
     
            int n = harmonicSeries(sum);
            cout << n << " card(s)" << endl;
        }
        return 0;
    }
     
     
    int harmonicSeries(double sum) {
        int n = 2;
        double curSum = 0.0;
        while(curSum < sum) {
            curSum += (1.0 / n++);
        }
        return n - 2;   // n从2开始因此项数-1, 最后一次求和多了一次n++也要-1, 因此共-2
    } 
  • 相关阅读:
    美化的滚动条
    网站系统开发参考网址
    正则表达式获取URL参数
    类实例 及 实例化对象 对象引用
    C# 静态方法 静态属性 调用静态方法
    C# 静态方法调用非静态方法
    winform 窗体间传值
    从数据库中读出数据并输出
    数据库链接字符串
    DbHelper
  • 原文地址:https://www.cnblogs.com/alan-blog-TsingHua/p/10622920.html
Copyright © 2011-2022 走看看