zoukankan      html  css  js  c++  java
  • POJ2689 Prime Distance

    时间限制: 1 Sec  内存限制: 512 MB
    提交: 104  解决: 16
    [提交] [状态] [命题人:admin]

    题目描述

    The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers. 
    Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

    输入

    Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.
     

    输出

    For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.
     

    样例输入

    2 17
    14 17
    

    样例输出

    2,3 are closest, 7,11 are most distant.
    There are no adjacent primes.

    显然求出[1,r]中所有的素数是不现实的,但r-l比较小,可以求出[l,r]间的素数。
    素数不好求,可以先求出合数,不是合数的就是素数。任何一个合数n必然包括一个不超过sqrt(n)的质因子,先打一个素数表,然后判断合数。

    #include <bits/stdc++.h>
    
    using namespace std;
    typedef long long ll;
    const int maxn = 1e6 + 100;
    const int N = sqrt(2147483647.0);
    ll v[maxn], prime[maxn];
    int cnt = 0;
    int e[maxn];
    int vis[maxn];
    
    void get_prime() {
        for (int i = 2; i <= N; i++) {
            if (!v[i]) {
                v[i] = i;
                prime[++cnt] = i;
            }
            for (int j = 1; j <= cnt; j++) {
                if (prime[j] > v[i] || prime[j] > N / i) break;
                v[i * prime[j]] = prime[j];
            }
        }
    }
    
    int main() {
        //freopen("input.txt", "r", stdin);
        int l, r;
        get_prime();
        while (scanf("%d %d", &l, &r) != EOF) {
            int tot = 0;
            int pos = 1;
            memset(vis, 0, sizeof(vis));
            if (1 - l >= 0) vis[1 - l] = 1;//要把1加进去
            while (prime[pos] <= r && pos <= cnt) {
                int from = l / prime[pos];
                int to = r / prime[pos];
                from = max(from, 2);
                for (int i = from; i <= to; i++) {
                    if (prime[pos] * i - l >= 0 && prime[pos] * i - l < maxn)
                        vis[prime[pos] * i - l]++;
                }
                pos++;
            }
            for (int i = 0; i <= r - l; i++) {
                if (!vis[i]) {
                    e[tot++] = i + l;
                }
            }
            if (tot < 2) {
                printf("There are no adjacent primes.
    ");
                continue;
            }
            int minl, minr, mi = 0x3f3f3f3f, maxl, maxr, ma = -1;
            for (int i = 1; i < tot; i++) {
                if (e[i] - e[i - 1] < mi) {
                    mi = e[i] - e[i - 1];
                    minl = e[i - 1];
                    minr = e[i];
                }
                if (e[i] - e[i - 1] > ma) {
                    ma = e[i] - e[i - 1];
                    maxl = e[i - 1];
                    maxr = e[i];
                }
            }
            printf("%d,%d are closest, %d,%d are most distant.
    ", minl, minr, maxl, maxr);
    
        }
        return 0;
    }
  • 相关阅读:
    未能加载文件或程序集“System.EnterpriseServices, Version=4.0.0.0或2.0.0.0
    解决本地调用office组件成功,但是发布到IIS中出现的错误(检索COM类工厂中CLSID为{00024500-0000-0000-C000-000000000046}的组件时失败)
    未能找到类型或命名空间名称“Coco”(是否缺少 using 指令或程序集引用)
    SQL截取字段字符串的方法
    C# 128位AES 加密解密 (转)
    检索 COM 类工厂中 CLSID 为 {13C28AD0-F195-4319-B7D7-A1BDAA329FB8} 的组件时失败,原因是出现以下错误: 80040154
    js 获取时间比较全,留备用(zhuan)
    windows之如何把iso文件转换为VHD文件
    python之三行代码发送邮件
    RobotFramework第二篇之web自动化
  • 原文地址:https://www.cnblogs.com/albert-biu/p/10654076.html
Copyright © 2011-2022 走看看