题目大意
求从一点出发的可视线段.
题解
先找出没有"被覆盖的点",然后从视点出发和每个可视点连线形成一条矢量线段,然后和每条线段的是否有有交点.
然后也有很多特殊情况需要处理..这里不再赘述.详情请见代码
代码
/* TASK:fence4 LANG:C++ */ #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; struct Vector { double x, y; Vector(double x=0, double y=0) : x(x), y(y) { } Vector operator + (Vector rbs) { return Vector(x + rbs.x, y + rbs.y); } Vector operator - (Vector rbs) { return Vector(x - rbs.x, y - rbs.y); } Vector operator * (double vari) { return Vector(x * vari, y * vari); } }v[205], per; const double eps = 1e-10; int dcmp(double x) { if (fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } double cross(Vector A, Vector B) { return A.x * B.y - A.y * B.x; } bool judge(Vector a1, Vector a2, Vector b1, Vector b2) { double c1 = cross(a2 - a1, b1 - a1), c2 = cross(a2 - a1, b2 - a1); double c3 = cross(b2 - b1, a1 - b1), c4 = cross(b2 - b1, a2 - b1); return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0; } bool judge2(Vector a1, Vector a2, Vector b1, Vector b2) { double c1 = cross(a2 - a1, b1 - a1), c2 = cross(a2 - a1, b2 - a1); return dcmp(c1) * dcmp(c2) < 0; } Vector getv(Vector P, Vector v, Vector Q, Vector w) { Vector u = P - Q; double t = cross(w, u) / cross(v, w); return P + (v * t); } double sqr(double x) { return x * x; } double dist(Vector a, Vector b) { return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y)); } int n, ansn, ans[205][2]; double mindis[205]; bool coverv[205]; int main() { freopen("fence4.in", "r", stdin); freopen("fence4.out", "w", stdout); scanf("%d", &n); scanf("%lf%lf", &per.x, &per.y); for (int i = 0; i < n; ++i) scanf("%lf%lf", &v[i].x, &v[i].y); bool flag = true; for (int i = 0; i < n; ++i) { for (int j = i + 2; j < n; ++j) if (judge(v[i], v[(i+1) % n], v[j], v[(j+1) % n])) { flag = false; break; } if (!flag) break; } if (!flag) printf("NOFENCE "); else { for (int i = 0; i < n; ++i) mindis[i] = 1e20; memset(coverv, false, sizeof(coverv)); for (int i = 0; i < n; ++i) { for (int j = 0; j < n; ++j) { if (j != i && j+1 != i) { if (judge2(per, v[i], v[j], v[(j+1) % n])) { Vector tmpv = getv(per, per-v[i], v[j], v[j]-v[(j+1) % n]); if (dcmp(tmpv.x-per.x) * dcmp(v[i].x-per.x) < 0 || dcmp(tmpv.y-per.y) * dcmp(v[i].y-per.y) < 0) continue; mindis[i] = min(mindis[i], dist(per, tmpv)); } } if (i != j && cross(v[i]-per, v[j]-per) == 0) { if (dcmp(v[j].x-per.x) * dcmp(v[i].x-per.x) < 0 || dcmp(v[j].y-per.y) * dcmp(v[i].y-per.y) < 0) continue; if (dist(v[i], per) < dist(v[j], per)) coverv[j] = true; else coverv[i] = true; } } } ansn = 0; for (int i = 0; i < n; ++i) { if (cross(v[i] - per, v[(i+1) % n] - per) == 0) continue; double d1 = dist(per, v[i]), d2 = dist(per, v[(i+1) % n]); int j = i; bool canbeseen = true; if (d1 > mindis[j] || coverv[j]) { for (;;) { if (j == -1) j = n - 1; if (j == (i+1) % n) { canbeseen = false; break; } if (!coverv[j]) { int left = (j-1+n)%n, right = (j+1)%n; if (dcmp(cross(v[j]-per, v[left]-per)) * dcmp(cross(v[j]-per, v[right]-per)) > 0) if (judge2(per, v[j], v[i], v[(i+1) % n])) { Vector tmpv = getv(per, per-v[j], v[i], v[i]-v[(i+1) % n]); if (abs(mindis[j] - dist(per, tmpv)) < eps) break; } } j--; } } int tmp = j; j = (i+1) % n; if (d2 > mindis[j] || coverv[j]) { for (;;) { if (j == n) j = 0; if (j == i) { canbeseen = false; break; } if (!coverv[j]) { int left = (j-1+n)%n, right = (j+1)%n; if (dcmp(cross(v[j]-per, v[left]-per)) * dcmp(cross(v[j]-per, v[right]-per)) > 0) if (judge2(per, v[j], v[i], v[(i+1) % n])) { Vector tmpv = getv(per, per-v[j], v[i], v[i]-v[(i+1) % n]); if (abs(mindis[j] - dist(per, tmpv)) < eps) break; } } j++; } } if (canbeseen && (cross(v[tmp] - per, v[j] - per) != 0)) { ans[ansn][0] = i; ans[ansn][1] = (i+1) % n; if (ans[ansn][1] < ans[ansn][0]) swap(ans[ansn][0], ans[ansn][1]); j = ansn; ansn++; while (j != 0 && ans[j][1] == ans[j-1][1] && ans[j][0] < ans[j-1][0]) { swap(ans[j][0], ans[j-1][0]); swap(ans[j][1], ans[j-1][1]); j--; } } } printf("%d ", ansn); for (int i = 0; i < ansn; ++i) printf("%.0lf %.0lf %.0lf %.0lf ", v[ans[i][0]].x, v[ans[i][0]].y, v[ans[i][1]].x, v[ans[i][1]].y); } return 0; }