zoukankan      html  css  js  c++  java
  • 【346】TF-IDF

    Ref: 文本挖掘预处理之向量化与Hash Trick

    Ref: 文本挖掘预处理之TF-IDF

    Ref: sklearn.feature_extraction.text.CountVectorizer

    Ref: TF-IDF与余弦相似性的应用(一):自动提取关键词

    Ref: TF-IDF与余弦相似性的应用(二):找出相似文章

    Ref: TF-IDF与余弦相似性的应用(三):自动摘要

    >>> from sklearn.feature_extraction.text import TfidfTransformer
    >>> from sklearn.feature_extraction.text import CountVectorizer
    >>> corpus=["I come to China to travel", 
        "This is a car polupar in China",          
        "I love tea and Apple ",   
        "The work is to write some papers in science"]
    >>> vectorizer=CountVectorizer()
    >>> transformer = TfidfTransformer()
    >>> tfidf = transformer.fit_transform(vectorizer.fit_transform(corpus))
    >>> print(tfidf)
      (0, 16)	0.4424621378947393
      (0, 15)	0.697684463383976
      (0, 4)	0.4424621378947393
      (0, 3)	0.348842231691988
      (1, 14)	0.45338639737285463
      (1, 9)	0.45338639737285463
      (1, 6)	0.3574550433419527
      (1, 5)	0.3574550433419527
      (1, 3)	0.3574550433419527
      (1, 2)	0.45338639737285463
      (2, 12)	0.5
      (2, 7)	0.5
      (2, 1)	0.5
      (2, 0)	0.5
      (3, 18)	0.3565798233381452
      (3, 17)	0.3565798233381452
      (3, 15)	0.2811316284405006
      (3, 13)	0.3565798233381452
      (3, 11)	0.3565798233381452
      (3, 10)	0.3565798233381452
      (3, 8)	0.3565798233381452
      (3, 6)	0.2811316284405006
      (3, 5)	0.2811316284405006
    >>> print(vectorizer.get_feature_names())
    ['and', 'apple', 'car', 'china', 'come', 'in', 'is', 'love', 'papers', 'polupar', 'science', 'some', 'tea', 'the', 'this', 'to', 'travel', 'work', 'write']
    

    说明:其中 (0, 16) 表示第一行文本,索引为 16 的词,对应的是“travel”,以此类推。

    继续上面的信息,获取对应 term 的 tfidf 值,tfidf 变量对应的是 (4, 19) 矩阵的值,对应不同的句子,不同的 term。

    >>> tfidf_array = tfidf.toarray()    #获取array,然后遍历array,并分别转为list
    >>> names_list = vectorizer.get_feature_names()    #获取names的list
    >>> for i in range(0, len(corpus)):
    	print(corpus[i],'
    ')
    	tmp_list = tfidf_array[i].tolist()
    	for j in range(0, len(names_list)):
    		if tmp_list[j] != 0:
    			if len(names_list[j])>=7:
    				print(names_list[j],'	',tmp_list[j])
    			else:
    				print(names_list[j],'		',tmp_list[j])
    	print('')
    
    	
    I come to China to travel 
    
    china 		 0.348842231691988
    come 		 0.4424621378947393
    to 		 0.697684463383976
    travel 		 0.4424621378947393
    
    This is a car polupar in China 
    
    car 		 0.45338639737285463
    china 		 0.3574550433419527
    in 		 0.3574550433419527
    is 		 0.3574550433419527
    polupar 	 0.45338639737285463
    this 		 0.45338639737285463
    
    I love tea and Apple  
    
    and 		 0.5
    apple 		 0.5
    love 		 0.5
    tea 		 0.5
    
    The work is to write some papers in science 
    
    in 		 0.2811316284405006
    is 		 0.2811316284405006
    papers 		 0.3565798233381452
    science 	 0.3565798233381452
    some 		 0.3565798233381452
    the 		 0.3565798233381452
    to 		 0.2811316284405006
    work 		 0.3565798233381452
    write 		 0.3565798233381452
    
    >>> 
    

    获取 TF(Term Frequency)

    >>> X = vectorizer.fit_transform(corpus)
    >>> X.toarray()
    array([[0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0],
           [0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0],
           [1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1]],
          dtype=int64)
    >>> vector_array = X.toarray()
    >>> for i in range(0, len(corpus)):
    	print(corpus[i],'
    ')
    	tmp_list = vector_array[i].tolist()
    	for j in range(0, len(names_list)):
    		if tmp_list[j] != 0:
    			if len(names_list[j])>=7:
    				print(names_list[j],'	',tmp_list[j])
    			else:
    				print(names_list[j],'		',tmp_list[j])
    	print('')
    
    I come to China to travel 
    
    china 		 1
    come 		 1
    to 		 2
    travel 		 1
    
    This is a car polupar in China 
    
    car 		 1
    china 		 1
    in 		 1
    is 		 1
    polupar 	 1
    this 		 1
    
    I love tea and Apple  
    
    and 		 1
    apple 		 1
    love 		 1
    tea 		 1
    
    The work is to write some papers in science 
    
    in 		 1
    is 		 1
    papers 		 1
    science 	 1
    some 		 1
    the 		 1
    to 		 1
    work 		 1
    write 		 1
    
    >>> 
    

  • 相关阅读:
    WebStorm 2018版本破解方法
    C# WMI通过网络连接名称获取IP掩码网关
    c# 调用RDP和SSH实现远程登陆
    LabVIEW中开放隐藏属性的inikey
    LabVIEW类方法浏览器-Class Method Browser
    hive split 注意事项
    机器学习三大框架对比
    Windows环境下搭建Nginx和多版本PHP共存
    javascript : location 对象
    ora-00031:session marked for kill处理oracle中杀不掉的锁
  • 原文地址:https://www.cnblogs.com/alex-bn-lee/p/10212235.html
Copyright © 2011-2022 走看看