Ref: 文本挖掘预处理之TF-IDF
Ref: sklearn.feature_extraction.text.CountVectorizer
Ref: TF-IDF与余弦相似性的应用(一):自动提取关键词
Ref: TF-IDF与余弦相似性的应用(二):找出相似文章
>>> from sklearn.feature_extraction.text import TfidfTransformer >>> from sklearn.feature_extraction.text import CountVectorizer >>> corpus=["I come to China to travel", "This is a car polupar in China", "I love tea and Apple ", "The work is to write some papers in science"] >>> vectorizer=CountVectorizer() >>> transformer = TfidfTransformer() >>> tfidf = transformer.fit_transform(vectorizer.fit_transform(corpus)) >>> print(tfidf) (0, 16) 0.4424621378947393 (0, 15) 0.697684463383976 (0, 4) 0.4424621378947393 (0, 3) 0.348842231691988 (1, 14) 0.45338639737285463 (1, 9) 0.45338639737285463 (1, 6) 0.3574550433419527 (1, 5) 0.3574550433419527 (1, 3) 0.3574550433419527 (1, 2) 0.45338639737285463 (2, 12) 0.5 (2, 7) 0.5 (2, 1) 0.5 (2, 0) 0.5 (3, 18) 0.3565798233381452 (3, 17) 0.3565798233381452 (3, 15) 0.2811316284405006 (3, 13) 0.3565798233381452 (3, 11) 0.3565798233381452 (3, 10) 0.3565798233381452 (3, 8) 0.3565798233381452 (3, 6) 0.2811316284405006 (3, 5) 0.2811316284405006 >>> print(vectorizer.get_feature_names()) ['and', 'apple', 'car', 'china', 'come', 'in', 'is', 'love', 'papers', 'polupar', 'science', 'some', 'tea', 'the', 'this', 'to', 'travel', 'work', 'write']
说明:其中 (0, 16) 表示第一行文本,索引为 16 的词,对应的是“travel”,以此类推。
继续上面的信息,获取对应 term 的 tfidf 值,tfidf 变量对应的是 (4, 19) 矩阵的值,对应不同的句子,不同的 term。
>>> tfidf_array = tfidf.toarray() #获取array,然后遍历array,并分别转为list >>> names_list = vectorizer.get_feature_names() #获取names的list >>> for i in range(0, len(corpus)): print(corpus[i],' ') tmp_list = tfidf_array[i].tolist() for j in range(0, len(names_list)): if tmp_list[j] != 0: if len(names_list[j])>=7: print(names_list[j],' ',tmp_list[j]) else: print(names_list[j],' ',tmp_list[j]) print('') I come to China to travel china 0.348842231691988 come 0.4424621378947393 to 0.697684463383976 travel 0.4424621378947393 This is a car polupar in China car 0.45338639737285463 china 0.3574550433419527 in 0.3574550433419527 is 0.3574550433419527 polupar 0.45338639737285463 this 0.45338639737285463 I love tea and Apple and 0.5 apple 0.5 love 0.5 tea 0.5 The work is to write some papers in science in 0.2811316284405006 is 0.2811316284405006 papers 0.3565798233381452 science 0.3565798233381452 some 0.3565798233381452 the 0.3565798233381452 to 0.2811316284405006 work 0.3565798233381452 write 0.3565798233381452 >>>
获取 TF(Term Frequency)
>>> X = vectorizer.fit_transform(corpus) >>> X.toarray() array([[0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0], [0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1]], dtype=int64) >>> vector_array = X.toarray() >>> for i in range(0, len(corpus)): print(corpus[i],' ') tmp_list = vector_array[i].tolist() for j in range(0, len(names_list)): if tmp_list[j] != 0: if len(names_list[j])>=7: print(names_list[j],' ',tmp_list[j]) else: print(names_list[j],' ',tmp_list[j]) print('') I come to China to travel china 1 come 1 to 2 travel 1 This is a car polupar in China car 1 china 1 in 1 is 1 polupar 1 this 1 I love tea and Apple and 1 apple 1 love 1 tea 1 The work is to write some papers in science in 1 is 1 papers 1 science 1 some 1 the 1 to 1 work 1 write 1 >>>