zoukankan      html  css  js  c++  java
  • 图像噪声估计算法

    Noise Estimation(噪声估计)

    1、原理

        现在主流的噪声估计模型大多基于Filter-Based Approach Using Arithmetic Averaging
    Filter-Based Approach Using Statistical Averaging先简单介绍一下这几种算法。

    1.1、Filter-Based Approach Using Arithmetic Averaging ——Filter-Base

        该类型算法是基于因为图像边缘结构具有很强的二阶差分特性,所以图像是对Laplacian Mask的噪声统计器是敏感的,算法通过两个Laplacian Mask组成的kernel来进行卷积操作 

    1.2、Filter-Based Approach Using Statistical Averaging —— Block-Base

        该算法的前期操作与1.1的算法相似,先简单的对源图进行一次Laplacian Mask 卷积,卷积核同1.1的N,

    在计算局部方差前,还需要做一次边缘检测,包含边缘的块将需要被排除掉,然后通过直方图计算噪声方差,

    2、算法过程

        该算法结合了上述的两种算法的优点,并进行了改进,具体算法过程如下:

    首先对图像亮度过高的点和过暗的点进行剔除,避免了在亮部和暗部的统计以及误估,在这里是对[16,235]间的像素进行提取,而且如果每个块被剔除掉的像素点超过一半的话,那该块就需要被裁减掉。然后对保留下来的块进行水平方向和垂直方向的Sobel梯度操作,以及同类块检测:


    3、算法改进
        3.1、对不同的图采用不同的块大小

        该算法不足之处,对所有的图片都裁切相同的像素块,但是对于一些大图,可能像素点相对小图来说,噪点密集度相对分散,而对于小图若采用过小的像素块,又会让值偏大,所以,我们对算法进行了修改,对于不同大小的图,我们采用不同的块大小,对300*300以下的图,我们采用宽度为7的块,对于300*300-800*800的图,我们采用宽度为6的块,对于大于800*800的块采用宽度为5的块。

        3.2、对图像进行缩放数据重采集

        该算法对于同样的图,进行等比例的缩放,如果噪声多的话,缩放完成后得到的噪声会相对应的增加,噪声少的话,所对应的噪声也会少,在这里,我们对数据进行缩放,进行一次重采集,对重新计算得到的数据进行辅助计算,以保证得到的最后的值保证准确性。

     

    4、算法的不足

       该算法对于一些细节较为丰富的图片的检测效果仍然不是很好,这是噪声估计算法的一个较大的通病,像以下的图片的检测效果效果误差会偏大。


    转载请注明出处——陈先生
    
    
    
    
  • 相关阅读:
    leetcode 122. Best Time to Buy and Sell Stock II
    leetcode 121. Best Time to Buy and Sell Stock
    python 集合(set)和字典(dictionary)的用法解析
    leetcode 53. Maximum Subarray
    leetcode 202. Happy Number
    leetcode 136.Single Number
    leetcode 703. Kth Largest Element in a Stream & c++ priority_queue & minHeap/maxHeap
    [leetcode]1379. Find a Corresponding Node of a Binary Tree in a Clone of That Tree
    正则表达式
    十种排序算法
  • 原文地址:https://www.cnblogs.com/algorithm-cpp/p/4105943.html
Copyright © 2011-2022 走看看