zoukankan      html  css  js  c++  java
  • 【原】 POJ 2262 Goldbach's Conjecture 筛素数 解题报告

    http://poj.org/problem?id=2262

    方法:
    首先筛得1000000以下的素数表,复杂度N*lglgN
    再用测试值减去素数表中从小到大的值,判断如果该值是素数,则不需要再接着找了,直接输出。复杂度N

    注意点:
    1、由于N很大,所以筛素数在计算i*i时可能会超过int的范围,所以需要采用__int64
    2、需要符合要求的a,b使得a+b=c的方法:
           a)枚举的方法。复杂度n^2
           b)顺序扫描符合要求的元素a,判断c-a是否也符合要求。复杂度n

    Description

    In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in which he made the following conjecture:

    Every even number greater than 4 can be 
    written as the sum of two odd prime numbers.

    For example:

    8 = 3 + 5. Both 3 and 5 are odd prime numbers. 
    20 = 3 + 17 = 7 + 13. 
    42 = 5 + 37 = 11 + 31 = 13 + 29 = 19 + 23.

    Today it is still unproven whether the conjecture is right. (Oh wait, I have the proof of course, but it is too long to write it on the margin of this page.) 
    Anyway, your task is now to verify Goldbach's conjecture for all even numbers less than a million.

    Input

    The input will contain one or more test cases. 
    Each test case consists of one even integer n with 6 <= n < 1000000. 
    Input will be terminated by a value of 0 for n.

    Output

    For each test case, print one line of the form n = a + b, where a and b are odd primes. Numbers and operators should be separated by exactly one blank like in the sample output below. If there is more than one pair of odd primes adding up to n, choose the pair where the difference b - a is maximized. If there is no such pair, print a line saying "Goldbach's conjecture is wrong."

    Sample Input

    8

    20

    42

    0

    Sample Output

    8 = 3 + 5

    20 = 3 + 17

    42 = 5 + 37

       1: #include <iostream>
       2:  
       3: using namespace std ;
       4:  
       5: const __int64 N = 1000001 ;
       6: const __int64 M = 78500;
       7: char table[N] = {0} ;
       8: //int prime[M] ;
       9:  
      10: //0为素数
      11: void GetPrimeTable()
      12: {
      13:     __int64 i ;
      14:     __int64 j ;
      15:  
      16:     table[0]=table[1]=1;
      17:     i=2 ;
      18:     while( i<N )
      19:     {
      20:         for( j=i*i ; j<N ; j+=i )
      21:             table[j]=1 ;
      22:         do ++i ;
      23:         while( i<N && table[i]==1 );
      24:     }
      25:     /*
      26:     for( i=2,j=0 ; i<N ; ++i )
      27:     {
      28:         if( table[i]==0 )
      29:             prime[j++]=i ;
      30:     }
      31:     */
      32: }
      33:  
      34:  
      35: void run2262()
      36: {
      37:     GetPrimeTable() ;
      38:  
      39:     int val ;
      40:     int a,b ;
      41:     int i,j ;
      42:     int sum ;
      43:     bool flag ;
      44:     while(cin>>val && val!=0)
      45:     {
      46:         /* TLE
      47:         //枚举 n^2
      48:         flag = false ;
      49:         for( i=0 ; i<M && flag==false ; ++i )
      50:         {
      51:             for( j=i+1 ; j<M ; ++j )
      52:             {
      53:                 sum = prime[i]+prime[j] ;
      54:                 if( sum > val )
      55:                 {
      56:                     flag = true ;
      57:                     break ;
      58:                 }
      59:                 else if( sum == val )
      60:                 {
      61:                     a = prime[i] ;
      62:                     b = prime[j] ;
      63:                     flag = true ;
      64:                     break ;
      65:                 }
      66:             }
      67:         }
      68:         */
      69:         for( i=2 ; i<N ; ++i )
      70:         {
      71:             if( table[i]==0 && table[val-i]==0 )
      72:             {
      73:                 a = i ;
      74:                 b = val-i ;
      75:                 break ;
      76:             }
      77:         }
      78:         cout<<val<<" = "<<a<<" + "<<b<<endl ;
      79:     }
      80: }
  • 相关阅读:
    课堂例子验证
    大道至简第三章读后感
    动手动脑例子验证
    各数相加的思路、流程图、源代码及实现截图
    大道至简第二章读后感
    《大道至简》第一章读后感
    个人冲刺08
    个人冲刺07
    构建之法读后感04
    个人冲刺06
  • 原文地址:https://www.cnblogs.com/allensun/p/1870215.html
Copyright © 2011-2022 走看看