zoukankan      html  css  js  c++  java
  • python3-----多进程、多线程、多协程

    目前计算机程序一般会遇到两类I/O:硬盘I/O和网络I/O。我就针对网络I/O的场景分析下python3下进程、线程、协程效率的对比。进程采用multiprocessing.Pool进程池,线程是自己封装的进程池,协程采用gevent的库。用python3自带的urlllib.request和开源的requests做对比。代码如下:

    import urllib.request
    import requests
    import time
    import multiprocessing
    import threading
    import queue
    
    def startTimer():
        return time.time()
    
    def ticT(startTime):
        useTime = time.time() - startTime
        return round(useTime, 3)
    
    #def tic(startTime, name):
    #    useTime = time.time() - startTime
    #    print('[%s] use time: %1.3f' % (name, useTime))
    
    def download_urllib(url):
        req = urllib.request.Request(url,
                headers={'user-agent': 'Mozilla/5.0'})
        res = urllib.request.urlopen(req)
        data = res.read()
        try:
            data = data.decode('gbk')
        except UnicodeDecodeError:
            data = data.decode('utf8', 'ignore')
        return res.status, data
    
    def download_requests(url):
        req = requests.get(url,
                headers={'user-agent': 'Mozilla/5.0'})
        return req.status_code, req.text
    
    class threadPoolManager:
        def __init__(self,urls, workNum=10000,threadNum=20):
            self.workQueue=queue.Queue()
            self.threadPool=[]
            self.__initWorkQueue(urls)
            self.__initThreadPool(threadNum)
    
        def __initWorkQueue(self,urls):
            for i in urls:
                self.workQueue.put((download_requests,i))
    
        def __initThreadPool(self,threadNum):
            for i in range(threadNum):
                self.threadPool.append(work(self.workQueue))
    
        def waitAllComplete(self):
            for i in self.threadPool:
                if i.isAlive():
                    i.join()
    
    class work(threading.Thread):
        def __init__(self,workQueue):
            threading.Thread.__init__(self)
            self.workQueue=workQueue
            self.start()
        def run(self):
            while True:
                if self.workQueue.qsize():
                    do,args=self.workQueue.get(block=False)
                    do(args)
                    self.workQueue.task_done()
                else:
                    break
    
    urls = ['http://www.ustchacker.com'] * 10
    urllibL = []
    requestsL = []
    multiPool = []
    threadPool = []
    N = 20
    PoolNum = 100
    
    for i in range(N):
        print('start %d try' % i)
        urllibT = startTimer()
        jobs = [download_urllib(url) for url in urls]
        #for status, data in jobs:
        #    print(status, data[:10])
        #tic(urllibT, 'urllib.request')
        urllibL.append(ticT(urllibT))
        print('1')
        
        requestsT = startTimer()
        jobs = [download_requests(url) for url in urls]
        #for status, data in jobs:
        #    print(status, data[:10])
        #tic(requestsT, 'requests')
        requestsL.append(ticT(requestsT))
        print('2')
        
        requestsT = startTimer()
        pool = multiprocessing.Pool(PoolNum)
        data = pool.map(download_requests, urls)
        pool.close()
        pool.join()
        multiPool.append(ticT(requestsT))
        print('3')
    
        requestsT = startTimer()
        pool = threadPoolManager(urls, threadNum=PoolNum)
        pool.waitAllComplete()
        threadPool.append(ticT(requestsT))
        print('4')
    
    import matplotlib.pyplot as plt
    x = list(range(1, N+1))
    plt.plot(x, urllibL, label='urllib')
    plt.plot(x, requestsL, label='requests')
    plt.plot(x, multiPool, label='requests MultiPool')
    plt.plot(x, threadPool, label='requests threadPool')
    plt.xlabel('test number')
    plt.ylabel('time(s)')
    plt.legend()
    plt.show()

    运行结果如下:

            从上图可以看出,python3自带的urllib.request效率还是不如开源的requests,multiprocessing进程池效率明显提升,但还低于自己封装的线程池,有一部分原因是创建、调度进程的开销比创建线程高(测试程序中我把创建的代价也包括在里面)。

    在Windows上要想使用进程模块,就必须把有关进程的代码写在当前.py文件的if __name__ == ‘__main__’ :语句的下面,才能正常使用Windows下的进程模块。Unix/Linux下则不需要。

    下面是gevent的测试代码:

    import urllib.request
    import requests
    import time
    import gevent.pool
    import gevent.monkey
    
    gevent.monkey.patch_all()
    
    def startTimer():
        return time.time()
    
    def ticT(startTime):
        useTime = time.time() - startTime
        return round(useTime, 3)
    
    #def tic(startTime, name):
    #    useTime = time.time() - startTime
    #    print('[%s] use time: %1.3f' % (name, useTime))
    
    def download_urllib(url):
        req = urllib.request.Request(url,
                headers={'user-agent': 'Mozilla/5.0'})
        res = urllib.request.urlopen(req)
        data = res.read()
        try:
            data = data.decode('gbk')
        except UnicodeDecodeError:
            data = data.decode('utf8', 'ignore')
        return res.status, data
    
    def download_requests(url):
        req = requests.get(url,
                headers={'user-agent': 'Mozilla/5.0'})
        return req.status_code, req.text
    
    urls = ['http://www.ustchacker.com'] * 10
    urllibL = []
    requestsL = []
    reqPool = []
    reqSpawn = []
    N = 20
    PoolNum = 100
    
    for i in range(N):
        print('start %d try' % i)
        urllibT = startTimer()
        jobs = [download_urllib(url) for url in urls]
        #for status, data in jobs:
        #    print(status, data[:10])
        #tic(urllibT, 'urllib.request')
        urllibL.append(ticT(urllibT))
        print('1')
        
        requestsT = startTimer()
        jobs = [download_requests(url) for url in urls]
        #for status, data in jobs:
        #    print(status, data[:10])
        #tic(requestsT, 'requests')
        requestsL.append(ticT(requestsT))
        print('2')
        
        requestsT = startTimer()
        pool = gevent.pool.Pool(PoolNum)
        data = pool.map(download_requests, urls)
        #for status, text in data:
        #    print(status, text[:10])
        #tic(requestsT, 'requests with gevent.pool')
        reqPool.append(ticT(requestsT))
        print('3')
        
        requestsT = startTimer()
        jobs = [gevent.spawn(download_requests, url) for url in urls]
        gevent.joinall(jobs)
        #for i in jobs:
        #    print(i.value[0], i.value[1][:10])
        #tic(requestsT, 'requests with gevent.spawn')
        reqSpawn.append(ticT(requestsT))
        print('4')
        
    import matplotlib.pyplot as plt
    x = list(range(1, N+1))
    plt.plot(x, urllibL, label='urllib')
    plt.plot(x, requestsL, label='requests')
    plt.plot(x, reqPool, label='requests geventPool')
    plt.plot(x, reqSpawn, label='requests Spawn')
    plt.xlabel('test number')
    plt.ylabel('time(s)')
    plt.legend()
    plt.show()

    运行结果如下:

            从上图可以看到,对于I/O密集型任务,gevent还是能对性能做很大提升的,由于协程的创建、调度开销都比线程小的多,所以可以看到不论使用gevent的Spawn模式还是Pool模式,性能差距不大。

            因为在gevent中需要使用monkey补丁,会提高gevent的性能,但会影响multiprocessing的运行,如果要同时使用,需要如下代码:

    gevent.monkey.patch_all(thread=False, socket=False, select=False)

    可是这样就不能充分发挥gevent的优势,所以不能把multiprocessing Pool、threading Pool、gevent Pool在一个程序中对比。不过比较两图可以得出结论,线程池和gevent的性能最优的,其次是进程池。附带得出个结论,requests库比urllib.request库性能要好一些哈:-)        

    转载请注明:转自http://blog.csdn.net/littlethunder/article/details/40983031

  • 相关阅读:
    nginx 、tomcat 配置表单附件大小限制
    清理redis服务器数据
    tomcat 8.5.55 webapps 无法部署应用目录 org.apache.catalina.startup.HostConfig.deployDirectory
    redis + tomcat8.5 session共享
    linux tar 打包
    mysql ORDER BY RAND() 语句优化
    解决Linux下程序端口占用问题
    javamail邮件发送开发中SharedByteArrayInputStream类找不到的错误(java.lang.NoClassDefFoundError: com/sun/mail/util/SharedByteArrayInputStream)
    ansible判定文件或者文件夹是否存在
    ansible应用
  • 原文地址:https://www.cnblogs.com/ameile/p/7216659.html
Copyright © 2011-2022 走看看