zoukankan      html  css  js  c++  java
  • AI

    TensorBoard

    TensorFlow自带的可视化工具,能够以直观的流程图的方式,清楚展示出整个神经网络的结构和框架,便于理解模型和发现问题。

    启动TensorBoard

    • 使用命令“tensorboard --logdir=path/to/log-directory”(或者“python -m tensorboard.main”);
    • 参数logdir指向FileWriter将数据序列化的目录,建议在logdir上一级目录执行此命令;
    • TensorBoard运行后,在浏览器输入“localhost:6006”即可查看TensorBoard;

    帮助信息

    • 使用“tensorboard --help”查看tensorboard的详细参数 

    示例

    程序代码

     1 # coding=utf-8
     2 from __future__ import print_function
     3 import tensorflow as tf
     4 import numpy as np
     5 import matplotlib.pyplot as plt
     6 import os
     7 
     8 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
     9 
    10 
    11 # ### 添加神经层
    12 
    13 
    14 def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):  # 参数n_layer用来标识层数
    15     layer_name = 'layer{}'.format(n_layer)
    16     with tf.name_scope(layer_name):  # 使用with tf.name_scope定义图层,并指定在可视化图层中的显示名称
    17         with tf.name_scope('weights'):  # 定义图层并指定名称,注意这里是上一图层的子图层
    18             Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')  # 参数name指定名称
    19             tf.summary.histogram(layer_name + '/weights', Weights)  # 生成直方图summary,指定图表名称和记录的变量
    20         with tf.name_scope('biases'):  # 定义图层并指定名称
    21             biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')  # 参数name指定名称
    22             tf.summary.histogram(layer_name + '/biases', biases)  # 生成直方图summary
    23         with tf.name_scope('Wx_plus_b'):  # 定义图层并指定名称
    24             Wx_plus_b = tf.matmul(inputs, Weights) + biases
    25         if activation_function is None:
    26             outputs = Wx_plus_b
    27         else:
    28             outputs = activation_function(Wx_plus_b)
    29         tf.summary.histogram(layer_name + '/outputs', outputs)  # 生成直方图summary
    30         return outputs
    31 
    32 
    33 # ### 构建数据
    34 x_data = np.linspace(-1, 1, 300, dtype=np.float32)[:, np.newaxis]
    35 noise = np.random.normal(0, 0.05, x_data.shape).astype(np.float32)
    36 y_data = np.square(x_data) - 0.5 + noise
    37 
    38 # ### 搭建网络
    39 with tf.name_scope('inputs'):  # 定义图层并指定名称
    40     xs = tf.placeholder(tf.float32, [None, 1], name='x_input')  # 指定名称为x_input,也就是在可视化图层中的显示名称
    41     ys = tf.placeholder(tf.float32, [None, 1], name='y_input')  # 指定名称为y_input
    42 
    43 h1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)  # 隐藏层
    44 prediction = add_layer(h1, 10, 1, n_layer=2, activation_function=None)  # 输出层
    45 
    46 with tf.name_scope('loss'):  # 定义图层并指定名称
    47     loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
    48                                         reduction_indices=[1]))
    49     tf.summary.scalar('loss', loss)  # 用于标量的summary,loss在TensorBoard的event栏
    50 
    51 with tf.name_scope('train'):  # 定义图层并指定名称
    52     train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    53 
    54 sess = tf.Session()
    55 merged = tf.summary.merge_all()  # 合并之前定义的所有summary操作
    56 writer = tf.summary.FileWriter("logs/", sess.graph)  # 创建FileWriter对象和event文件,指定event文件的存放目录
    57 init = tf.global_variables_initializer()
    58 sess.run(init)
    59 
    60 # ### 结果可视化
    61 fig = plt.figure()
    62 ax = fig.add_subplot(1, 1, 1)
    63 ax.scatter(x_data, y_data)
    64 plt.ion()
    65 plt.show()
    66 
    67 # ### 训练
    68 for i in range(1001):
    69     sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
    70     if i % 50 == 0:
    71         result = sess.run(loss, feed_dict={xs: x_data, ys: y_data})
    72         print("Steps:{}  Loss:{}".format(i, result))
    73         rs = sess.run(merged, feed_dict={xs: x_data, ys: y_data})  # 在sess.run中运行
    74         writer.add_summary(rs, i)
    75         try:
    76             ax.lines.remove(lines[0])
    77         except Exception:
    78             pass
    79         prediction_value = sess.run(prediction, feed_dict={xs: x_data})
    80         lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
    81         plt.pause(0.2)
    82 
    83 # ### TensorBoard
    84 # TensorFlow自带的可视化工具,能够以直观的流程图的方式,清楚展示出整个神经网络的结构和框架,便于理解模型和发现问题;
    85 #   - 可视化学习:https://www.tensorflow.org/guide/summaries_and_tensorboard
    86 #   - 图的直观展示:https://www.tensorflow.org/guide/graph_viz;
    87 #   - 直方图信息中心:https://www.tensorflow.org/guide/tensorboard_histograms
    88 #
    89 # ### 启动TensorBoard
    90 # 使用命令“tensorboard --logdir=path/to/log-directory”(或者“python -m tensorboard.main”);
    91 # 参数logdir指向FileWriter将数据序列化的目录,建议在logdir上一级目录执行此命令;
    92 # TensorBoard运行后,在浏览器输入“localhost:6006”即可查看TensorBoard;

    程序运行结果

    运行过程中显示的图形:

    某一次运行的命令行输出:

    Steps:0  Loss:0.19870562851428986
    Steps:50  Loss:0.006314810831099749
    Steps:100  Loss:0.0050856382586061954
    Steps:150  Loss:0.0048223137855529785
    Steps:200  Loss:0.004617161583155394
    Steps:250  Loss:0.004429362714290619
    Steps:300  Loss:0.004260621033608913
    Steps:350  Loss:0.004093690309673548
    Steps:400  Loss:0.003932977095246315
    Steps:450  Loss:0.0038178395479917526
    Steps:500  Loss:0.003722294932231307
    Steps:550  Loss:0.003660505171865225
    Steps:600  Loss:0.0036110866349190474
    Steps:650  Loss:0.0035716891288757324
    Steps:700  Loss:0.0035362064372748137
    Steps:750  Loss:0.0034975067246705294
    Steps:800  Loss:0.003465239657089114
    Steps:850  Loss:0.003431882942095399
    Steps:900  Loss:0.00339301535859704
    Steps:950  Loss:0.0033665322698652744
    Steps:1000  Loss:0.003349516075104475

    生成的TensorBoard文件:

    (mlcc) D:AnlivenAnliven-CodePycharmProjectsTempTest>dir logs
     驱动器 D 中的卷是 Files
     卷的序列号是 ACF9-2E0E
    
     D:AnlivenAnliven-CodePycharmProjectsTempTestlogs 的目录
    
    2019/02/24  23:41    <DIR>          .
    2019/02/24  23:41    <DIR>          ..
    2019/02/24  23:41           137,221 events.out.tfevents.1551022894.DESKTOP-68OFQFP
                   1 个文件        137,221 字节
                   2 个目录 219,401,887,744 可用字节
    
    (mlcc) D:AnlivenAnliven-CodePycharmProjectsTempTest>

    启动与TensorBoard

    执行下面的启动命令,然后在浏览器中输入“http://localhost:6006/”查看。

    (mlcc) D:AnlivenAnliven-CodePycharmProjectsTempTest>tensorboard --logdir=logs
    TensorBoard 1.12.0 at http://DESKTOP-68OFQFP:6006 (Press CTRL+C to quit)

    栏目Scalars

    栏目Graphs

    • 通过鼠标滑轮可以改变显示大小和位置 
    • 鼠标双击“+”标识可以查看进一步的信息
    • 可以将指定图层从主图层移出,单独显示

    栏目Distributions

    栏目histograms

  • 相关阅读:
    ios初级必看视频
    Md5加密
    Jmail发送邮件
    NPOI Helper文档
    jquery 序列化
    mvc DropDownList默认选项
    获取HTML
    EntityFramework Reverse POCO Generator工具
    全选反选
    mvc导出EXCEL
  • 原文地址:https://www.cnblogs.com/anliven/p/10424915.html
Copyright © 2011-2022 走看看