import os from PIL import Image from torch.utils import data import numpy as np from torchvision import transforms as T class My_Data(data.Dataset): def __init__(self, root, transforms=None, train=True, test=False): ''' 目标:获取所有图片路径,并根据训练、验证、测试划分数据 ''' self.test = test classs = os.listdir(root) imgs = [] labels = [] for idx, folder in enumerate(classs): cate = os.path.join(root, folder) for img_num, im in enumerate(os.listdir(cate)): img_path = os.path.join(cate, im) #打包图片路径(转换为list) imgs.append(img_path) #打包标签路径(转换为list) labels.append(idx) if self.test: imgs = sorted(imgs, key=lambda x: int(x.split('.')[-2].split('/')[-1])) else: imgs = list(zip(imgs , labels)) #将图片路径与标签打包成一个list imgs_num = len(imgs) # shuffle imgs np.random.seed(100) imgs = np.random.permutation(imgs) # 划分训练、验证集,验证:训练 = 3:7 if self.test: self.imgs = imgs elif train: self.imgs = imgs[:int(0.7 * imgs_num)] else: self.imgs = imgs[int(0.7 * imgs_num):] if transforms is None: # 数据转换操作,测试验证和训练的数据转换有所区别 normalize = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 测试集和验证集不用数据增强 if self.test or not train: self.transforms = T.Compose([ T.Resize(32), T.CenterCrop(32), T.ToTensor(), normalize ]) # 训练集需要数据增强 else: self.transforms = T.Compose([ T.Resize(32), T.RandomResizedCrop(32), T.RandomHorizontalFlip(), T.ToTensor(), normalize ]) def __getitem__(self,index): ''' 返回一张图片的数据 对于测试集,没有label,返回图片id,如1000.jpg返回1000 送入一个batch_size的数据 ''' img_lables = self.imgs[index] img_path = img_lables[0] if self.test: label = int(self.imgs[index].split('.')[-2].split('/')[-1]) else: label = int(img_lables[1]) data = Image.open(img_path) data = self.transforms(data) return data, label def __len__(self): ''' 返回数据集中所有图片的个数 ''' return len(self.imgs)
作为备份使用。