zoukankan      html  css  js  c++  java
  • 机器学习中回归和分类的区别

    回归与分类的不同

    #导入回归
    from sklearn.ensemble import RandomForestRegressor
    #导入分类
    from sklearn.ensemble import RandomForestClassifier

    1.回归问题的应用场景(预测的结果是连续的,例如预测明天的温度,23,24,25度)

    回归问题通常是用来预测一个值,如预测房价、未来的天气情况等等,例如一个产品的实际价格为500元,通过回归分析预测值为499元,我们认为这是一个比较好的回归分析。一个比较常见的回归算法是线性回归算法(LR)。另外,回归分析用在神经网络上,其最上层是不需要加上softmax函数的,而是直接对前一层累加即可。回归是对真实值的一种逼近预测。

    2.分类问题的应用场景(预测的结果是离散的,例如预测明天天气-阴,晴,雨)

    分类问题是用于将事物打上一个标签,通常结果为离散值。例如判断一幅图片上的动物是一只猫还是一只狗,分类通常是建立在回归之上,分类的最后一层通常要使用softmax函数进行判断其所属类别。分类并没有逼近的概念,最终正确结果只有一个,错误的就是错误的,不会有相近的概念。最常见的分类方法是逻辑回归,或者叫逻辑分类。

    3.如何选择模型

    下面一幅图可以告诉实际应用中我们如何选择合适的模型。

    分类,回归,聚类,降维

  • 相关阅读:
    文艺平衡树
    [BJOI2010] 严格次小生成树
    BZOJ3864 hero meet devil
    [NOI2010]能量采集(莫比乌斯反演)
    陌上花开(三维偏序)(cdq分治)
    树状数组套trie 模板
    SDOI2010粟粟的书架
    OI计算几何 简单学习笔记
    OI知识点|NOIP考点|省选考点|教程与学习笔记合集
    悬线法学习笔记
  • 原文地址:https://www.cnblogs.com/antique/p/10688895.html
Copyright © 2011-2022 走看看