zoukankan      html  css  js  c++  java
  • [Leetcode] Binary search, DP--300. Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence.

    For example,
    Given [10, 9, 2, 5, 3, 7, 101, 18],
    The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.

    Solution:

    #1. naive method; time complexity o(n^2). two layers iteration. 1) first iterate each element nums[i] in the nums, , 2) second iteration to find the bigger num[j] to add as each list 3) then find the maximum length list in the lists. length[i] += 1 if nums[j] > nums[i]
    #or reversely, smaller nums[j] to update length[i]. i to 0 to len(nums), j = 0 to i; so length[i] = max(length[i], length[j]+1)

    #2n d use binary search, try to select and insert into the increasing sequence
    #(1) maintain a result list ans = [nums[0]]
    #(2) iterate nums from second element num, compare num with the last element of ans:
    # a. if num < ans[-1]
    # insert num into ans
    # else binary search in the ans the left insertion position for num (i.e. the smallest number that is bigger than num), and replace it

       def binarySearch(lst, ele):
                if len(lst) == 1:
                    return 0
                l = 0
                h = len(lst) - 1
                while (l <= h):
                    mid = (l+h)/2
                    if lst[mid] == ele:
                        return mid
                    elif lst[mid] < ele:
                        l = mid + 1
                    else:
                        h = mid - 1
                if l >= len(lst):
                    return -1
                return l
            
            if len(nums) == 0:
                return 0
            ansLst = []
            ansLst.append(nums[0])
            for i in range(1, len(nums)):
                if nums[i] > ansLst[-1]:
                    ansLst.append(nums[i])
                else:
                    #binary search
                    pos = binarySearch(ansLst, nums[i])
                    #print ('pos: ', len(ansLst), pos)
                    ansLst[pos]
      return len(ansLst)

      

    #note it is for length of longest increasing sequence, the final ansLst may not be the real longest increasing sequence



    #3rd use Dynamic programming
    #use DP[i] indicate the length of longest increasing sequence at position i so far.
    #it has optimal substructure: every sublist has the optimal solution for the longest increasing sequence
    #overlapping subproblem: the large sublist problem is affected by the previous smaller sublist :
    #the transition equation: DP[i] = max(DP[i], DP[j] + 1) ; i = 1 to len(nums), j = 0 to i
    #intialize all DP element as 1

    if len(nums) == 0:
                return 0
            
            dp = [1] * len(nums)
            for i in range(1, len(nums)):
                for j in range(0, i):
                    if nums[j] < nums[i]:
                        dp[i] = max(dp[i], dp[j] + 1)
            return max(dp)
  • 相关阅读:
    Laravel入坑指南(5)——请求与响应
    Laravel入坑指南(4)——数据库(Mysql)
    CentOS7 开机网卡加载失败
    个人CKeditor的config.js配置
    取消ie浏览器edge浏览器输入框右边的叉和眼睛
    angularjs中ckeditor的destroy问题
    angular js ckeditor directive示例代码
    建立没有文件名的文件
    设置ckeditor文本框的宽度为百分比自适应
    js中遍历删除数组中的项(项目中遇到的问题解决)
  • 原文地址:https://www.cnblogs.com/anxin6699/p/6962154.html
Copyright © 2011-2022 走看看