100 numpy exercises
A joint effort of the numpy community
The goal is both to offer a quick reference for new and old users and to provide also a set of exercices for those who teach. If you remember having asked or answered a (short) problem, you can send a pull request. The format is:
#. Find indices of non-zero elements from [1,2,0,0,4,0] .. code:: python # Author: Somebody print(np.nonzero([1,2,0,0,4,0]))
Here is what the page looks like so far: http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html
Repository is at: https://github.com/rougier/numpy-100
Thanks to Michiaki Ariga, there is now a Julia version.
-
Import the numpy package under the name
np
(★☆☆☆☆)import numpy as np
-
Print the numpy version and the configuration (★☆☆☆☆)
print(np.__version__) np.__config__.show()
-
Create a null vector of size 10 (★☆☆☆☆)
Z = np.zeros(10) print(Z)
-
How to get the documentation of the numpy add function from the command line ? (★☆☆☆☆)
python -c "import numpy; numpy.info(numpy.add)"
-
Create a null vector of size 10 but the fifth value which is 1 (★☆☆☆☆)
Z = np.zeros(10) Z[4] = 1 print(Z)
-
Create a vector with values ranging from 10 to 49 (★☆☆☆☆)
Z = np.arange(10,50) print(Z)
-
Reverse a vector (first element becomes last) (★☆☆☆☆)
Z = np.arange(50) Z = Z[::-1]
-
Create a 3x3 matrix with values ranging from 0 to 8 (★☆☆☆☆)
Z = np.arange(9).reshape(3,3) print(Z)
-
Find indices of non-zero elements from [1,2,0,0,4,0] (★☆☆☆☆)
nz = np.nonzero([1,2,0,0,4,0]) print(nz)
-
Create a 3x3 identity matrix (★☆☆☆☆)
Z = np.eye(3) print(Z)
-
Create a 3x3x3 array with random values (★☆☆☆☆)
Z = np.random.random((3,3,3)) print(Z)
-
Create a 10x10 array with random values and find the minimum and maximum values (★☆☆☆☆)
Z = np.random.random((10,10)) Zmin, Zmax = Z.min(), Z.max() print(Zmin, Zmax)
-
Create a random vector of size 30 and find the mean value (★☆☆☆☆)
Z = np.random.random(30) m = Z.mean() print(m)
-
Create a 5x5 matrix with values 1,2,3,4 just below the diagonal (★★☆☆☆)
Z = np.diag(1+np.arange(4),k=-1) print(Z)
-
Create a 8x8 matrix and fill it with a checkerboard pattern (★★☆☆☆)
Z = np.zeros((8,8),dtype=int) Z[1::2,::2] = 1 Z[::2,1::2] = 1 print(Z)
-
Create a checkerboard 8x8 matrix using the tile function (★★☆☆☆)
Z = np.tile( np.array([[0,1],[1,0]]), (4,4)) print(Z)
-
Normalize a 5x5 random matrix (★★☆☆☆)
Z = np.random.random((5,5)) Zmax, Zmin = Z.max(), Z.min() Z = (Z - Zmin)/(Zmax - Zmin) print(Z)
-
Multiply a 5x3 matrix by a 3x2 matrix (real matrix product) (★★☆☆☆)
Z = np.dot(np.ones((5,3)), np.ones((3,2))) print(Z)
-
Create a 5x5 matrix with row values ranging from 0 to 4 (★★☆☆☆)
Z = np.zeros((5,5)) Z += np.arange(5) print(Z)
-
Create a vector of size 10 with values ranging from 0 to 1, both excluded (★★☆☆☆)
Z = np.linspace(0,1,12,endpoint=True)[1:-1] print(Z)
-
Create a random vector of size 10 and sort it (★★☆☆☆)
Z = np.random.random(10) Z.sort() print(Z)
-
Consider two random array A anb B, check if they are equal (★★☆☆☆)
A = np.random.randint(0,2,5) B = np.random.randint(0,2,5) equal = np.allclose(A,B) print(equal)
-
Make an array immutable (read-only) (★★☆☆☆)
Z = np.zeros(10) Z.flags.writeable = False Z[0] = 1
-
Consider a random 10x2 matrix representing cartesian coordinates, convert them to polar coordinates (★★☆☆☆)
Z = np.random.random((10,2)) X,Y = Z[:,0], Z[:,1] R = np.sqrt(X**2+Y**2) T = np.arctan2(Y,X) print(R) print(T)
-
Create random vector of size 10 and replace the maximum value by 0 (★★☆☆☆)
Z = np.random.random(10) Z[Z.argmax()] = 0 print(Z)
-
Create a structured array with
x
andy
coordinates covering the [0,1]x[0,1] area (★★☆☆☆)Z = np.zeros((10,10), [('x',float),('y',float)]) Z['x'], Z['y'] = np.meshgrid(np.linspace(0,1,10), np.linspace(0,1,10)) print(Z)
-
Print the minimum and maximum representable value for each numpy scalar type (★★☆☆☆)
for dtype in [np.int8, np.int32, np.int64]: print(np.iinfo(dtype).min) print(np.iinfo(dtype).max) for dtype in [np.float32, np.float64]: print(np.finfo(dtype).min) print(np.finfo(dtype).max) print(np.finfo(dtype).eps)
-
Create a structured array representing a position (x,y) and a color (r,g,b) (★★☆☆☆)
Z = np.zeros(10, [ ('position', [ ('x', float, 1), ('y', float, 1)]), ('color', [ ('r', float, 1), ('g', float, 1), ('b', float, 1)])]) print(Z)
-
Consider a random vector with shape (100,2) representing coordinates, find point by point distances (★★☆☆☆)
Z = np.random.random((10,2)) X,Y = np.atleast_2d(Z[:,0]), np.atleast_2d(Z[:,1]) D = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2) print(D) # Much faster with scipy import scipy # Thanks Gavin Heverly-Coulson (#issue 1) import scipy.spatial Z = np.random.random((10,2)) D = scipy.spatial.distance.cdist(Z,Z) print(D)
-
Consider the following file:
1,2,3,4,5 6,,,7,8 ,,9,10,11
How to read it ? (★★☆☆☆)
Z = np.genfromtxt("missing.dat", delimiter=",")
-
Generate a generic 2D Gaussian-like array (★★☆☆☆)
X, Y = np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10)) D = np.sqrt(X*X+Y*Y) sigma, mu = 1.0, 0.0 G = np.exp(-( (D-mu)**2 / ( 2.0 * sigma**2 ) ) ) print(G)
-
How to randomly place p elements in a 2D array ? (★★★☆☆)
# Author: Divakar n = 10 p = 3 Z = np.zeros((n,n)) np.put(Z, np.random.choice(range(n*n), p, replace=False),1)
-
Subtract the mean of each row of a matrix (★★★☆☆)
# Author: Warren Weckesser X = np.random.rand(5, 10) # Recent versions of numpy Y = X - X.mean(axis=1, keepdims=True) # Older versions of numpy Y = X - X.mean(axis=1).reshape(-1, 1)
-
How to I sort an array by the nth column ? (★★★☆☆)
# Author: Steve Tjoa Z = np.random.randint(0,10,(3,3)) print(Z) print(Z[Z[:,1].argsort()])
-
How to tell if a given 2D array has null columns ? (★★★☆☆)
# Author: Warren Weckesser Z = np.random.randint(0,3,(3,10)) print((~Z.any(axis=0)).any())
-
Find the nearest value from a given value in an array (★★★☆☆)
Z = np.random.uniform(0,1,10) z = 0.5 m = Z.flat[np.abs(Z - z).argmin()] print(m)
-
Consider a generator function that generates 10 integers and use it to build an array (★★★☆☆)
def generate(): for x in xrange(10): yield x Z = np.fromiter(generate(),dtype=float,count=-1) print(Z)
-
Consider a given vector, how to add 1 to each element indexed by a second vector (be careful with repeated indices) ? (★★★☆☆)
# Author: Brett Olsen Z = np.ones(10) I = np.random.randint(0,len(Z),20) Z += np.bincount(I, minlength=len(Z)) print(Z)
-
How to accumulate elements of a vector (X) to an array (F) based on an index list (I) ? (★★★☆☆)
# Author: Alan G Isaac X = [1,2,3,4,5,6] I = [1,3,9,3,4,1] F = np.bincount(I,X) print(F)
-
Considering a (w,h,3) image of (dtype=ubyte), compute the number of unique colors (★★★☆☆)
# Author: Nadav Horesh w,h = 16,16 I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte) F = I[...,0]*256*256 + I[...,1]*256 +I[...,2] n = len(np.unique(F)) print(np.unique(I))
-
Considering a four dimensions array, how to get sum over the last two axis at once ? (★★★☆☆)
A = np.random.randint(0,10,(3,4,3,4)) sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1) print(sum)
-
Considering a one-dimensional vector D, how to compute means of subsets of D using a vector S of same size describing subset indices ? (★★★☆☆)
# Author: Jaime Fernández del Río D = np.random.uniform(0,1,100) S = np.random.randint(0,10,100) D_sums = np.bincount(S, weights=D) D_counts = np.bincount(S) D_means = D_sums / D_counts print(D_means)
-
How to get the diagonal of a dot product ? (★★★☆☆)
# Author: Mathieu Blondel # Slow version np.diag(np.dot(A, B)) # Fast version np.sum(A * B.T, axis=1) # Faster version np.einsum("ij,ji->i", A, B).
-
Consider the vector [1, 2, 3, 4, 5], how to build a new vector with 3 consecutive zeros interleaved between each value ? (★★★☆☆)
# Author: Warren Weckesser Z = np.array([1,2,3,4,5]) nz = 3 Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz)) Z0[::nz+1] = Z print(Z0)
-
Consider an array of dimension (5,5,3), how to mulitply it by an array with dimensions (5,5) ? (★★★☆☆)
A = np.ones((5,5,3)) B = 2*np.ones((5,5)) print(A * B[:,:,None])
-
How to swap two rows of an array ? (★★★☆☆)
# Author: Eelco Hoogendoorn A = np.arange(25).reshape(5,5) A[[0,1]] = A[[1,0]] print(A)
-
Consider a set of 10 triplets describing 10 triangles (with shared vertices), find the set of unique line segments composing all the triangles (★★★☆☆)
# Author: Nicolas P. Rougier faces = np.random.randint(0,100,(10,3)) F = np.roll(faces.repeat(2,axis=1),-1,axis=1) F = F.reshape(len(F)*3,2) F = np.sort(F,axis=1) G = F.view( dtype=[('p0',F.dtype),('p1',F.dtype)] ) G = np.unique(G) print(G)
-
Given an array C that is a bincount, how to produce an array A such that np.bincount(A) == C ? (★★★☆☆)
# Author: Jaime Fernández del Río C = np.bincount([1,1,2,3,4,4,6]) A = np.repeat(np.arange(len(C)), C) print(A)
-
How to compute averages using a sliding window over an array ? (★★★☆☆)
# Author: Jaime Fernández del Río def moving_average(a, n=3) : ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1:] / n Z = np.arange(20) print(moving_average(Z, n=3))
-
Consider a one-dimensional array Z, build a two-dimensional array whose first row is (Z[0],Z[1],Z[2]) and each subsequent row is shifted by 1 (last row should be (Z[-3],Z[-2],Z[-1]) (★★★☆☆)
# Author: Joe Kington / Erik Rigtorp from numpy.lib import stride_tricks def rolling(a, window): shape = (a.size - window + 1, window) strides = (a.itemsize, a.itemsize) return stride_tricks.as_strided(a, shape=shape, strides=strides) Z = rolling(np.arange(10), 3) print(Z)
-
How to negate a boolean, or to change the sign of a float inplace ? (★★★☆☆)
# Author: Nathaniel J. Smith Z = np.random.randint(0,2,100) np.logical_not(arr, out=arr) Z = np.random.uniform(-1.0,1.0,100) np.negative(arr, out=arr)
-
Consider 2 sets of points P0,P1 describing lines (2d) and a point p, how to compute distance from p to each line i (P0[i],P1[i]) ? (★★★☆☆)
def distance(P0, P1, p): T = P1 - P0 L = (T**2).sum(axis=1) U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L U = U.reshape(len(U),1) D = P0 + U*T - p return np.sqrt((D**2).sum(axis=1)) P0 = np.random.uniform(-10,10,(10,2)) P1 = np.random.uniform(-10,10,(10,2)) p = np.random.uniform(-10,10,( 1,2)) print(distance(P0, P1, p))
-
Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, how to compute distance from each point j (P[j]) to each line i (P0[i],P1[i]) ? (★★★☆☆)
# Author: Italmassov Kuanysh # based on distance function from previous question P0 = np.random.uniform(-10, 10, (10,2)) P1 = np.random.uniform(-10,10,(10,2)) p = np.random.uniform(-10, 10, (10,2)) print np.array([distance(P0,P1,p_i) for p_i in p])
-
Consider an arbitrary array, write a function that extract a subpart with a fixed shape and centered on a given element (pad with a
fill
value when necessary) (★★★☆☆)# Author: Nicolas Rougier Z = np.random.randint(0,10,(10,10)) shape = (5,5) fill = 0 position = (1,1) R = np.ones(shape, dtype=Z.dtype)*fill P = np.array(list(position)).astype(int) Rs = np.array(list(R.shape)).astype(int) Zs = np.array(list(Z.shape)).astype(int) R_start = np.zeros((len(shape),)).astype(int) R_stop = np.array(list(shape)).astype(int) Z_start = (P-Rs//2) Z_stop = (P+Rs//2)+Rs%2 R_start = (R_start - np.minimum(Z_start,0)).tolist() Z_start = (np.maximum(Z_start,0)).tolist() R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist() Z_stop = (np.minimum(Z_stop,Zs)).tolist() r = [slice(start,stop) for start,stop in zip(R_start,R_stop)] z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)] R[r] = Z[z] print(Z) print(R)
-
Consider an array Z = [1,2,3,4,5,6,7,8,9,10,11,12,13,14], how to generate an array R = [[1,2,3,4], [2,3,4,5], [3,4,5,6], ..., [11,12,13,14]] ? (★★★☆☆)
# Author: Stefan van der Walt Z = np.arange(1,15,dtype=uint32) R = stride_tricks.as_strided(Z,(11,4),(4,4)) print(R)
-
Compute a matrix rank (★★★☆☆)
# Author: Stefan van der Walt Z = np.random.uniform(0,1,(10,10)) U, S, V = np.linalg.svd(Z) # Singular Value Decomposition rank = np.sum(S > 1e-10)
-
Extract all the contiguous 3x3 blocks from a random 10x10 matrix (★★★☆☆)
# Author: Chris Barker Z = np.random.randint(0,5,(10,10)) n = 3 i = 1 + (Z.shape[0]-3) j = 1 + (Z.shape[1]-3) C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides) print(C)
-
Create a 2D array subclass such that Z[i,j] == Z[j,i] (★★★☆☆)
# Author: Eric O. Lebigot # Note: only works for 2d array and value setting using indices class Symetric(np.ndarray): def __setitem__(self, (i,j), value): super(Symetric, self).__setitem__((i,j), value) super(Symetric, self).__setitem__((j,i), value) def symetric(Z): return np.asarray(Z + Z.T - np.diag(Z.diagonal())).view(Symetric) S = symetric(np.random.randint(0,10,(5,5))) S[2,3] = 42 print(S)
-
Consider a set of p matrices wich shape (n,n) and a set of p vectors with shape (n,1). How to compute the sum of of the p matrix products at once ? (result has shape (n,1)) (★★★☆☆)
# Author: Stefan van der Walt p, n = 10, 20 M = np.ones((p,n,n)) V = np.ones((p,n,1)) S = np.tensordot(M, V, axes=[[0, 2], [0, 1]]) print(S) # It works, because: # M is (p,n,n) # V is (p,n,1) # Thus, summing over the paired axes 0 and 0 (of M and V independently), # and 2 and 1, to remain with a (n,1) vector.
-
Consider a 16x16 array, how to get the block-sum (block size is 4x4) ? (★★★☆☆)
# Author: Robert Kern Z = np.ones(16,16) k = 4 S = np.add.reduceat(np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0), np.arange(0, Z.shape[1], k), axis=1)
-
How to implement the Game of Life using numpy arrays ? (★★★☆☆)
# Author: Nicolas Rougier def iterate(Z): # Count neighbours N = (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] + Z[1:-1,0:-2] + Z[1:-1,2:] + Z[2: ,0:-2] + Z[2: ,1:-1] + Z[2: ,2:]) # Apply rules birth = (N==3) & (Z[1:-1,1:-1]==0) survive = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1) Z[...] = 0 Z[1:-1,1:-1][birth | survive] = 1 return Z Z = np.random.randint(0,2,(50,50)) for i in range(100): Z = iterate(Z)
-
Given an arbitrary number of vectors, build the cartesian product (every combinations of every item) (★★★☆☆)
# Author: Stefan Van der Walt def cartesian(arrays): arrays = [np.asarray(a) for a in arrays] shape = (len(x) for x in arrays) ix = np.indices(shape, dtype=int) ix = ix.reshape(len(arrays), -1).T for n, arr in enumerate(arrays): ix[:, n] = arrays[n][ix[:, n]] return ix print (cartesian(([1, 2, 3], [4, 5], [6, 7])))
-
How to create a record array from a regular array ? (★★★☆☆)
Z = np.array([("Hello", 2.5, 3), ("World", 3.6, 2)]) R = np.core.records.fromarrays(Z.T, names='col1, col2, col3', formats = 'S8, f8, i8')
-
Comsider a large vector Z, compute Z to the power of 3 using 3 different methods (★★★☆☆)
Author: Ryan G. x = np.random.rand(5e7) %timeit np.power(x,3) 1 loops, best of 3: 574 ms per loop %timeit x*x*x 1 loops, best of 3: 429 ms per loop %timeit np.einsum('i,i,i->i',x,x,x) 1 loops, best of 3: 244 ms per loop
-
Consider two arrays A and B of shape (8,3) and (2,2). How to find rows of A that contain elements of each row of B regardless of the order of the elements in B ? (★★★★☆)
# Author: Gabe Schwartz A = np.random.randint(0,5,(8,3)) B = np.random.randint(0,5,(2,2)) C = (A[..., np.newaxis, np.newaxis] == B) rows = (C.sum(axis=(1,2,3)) >= B.shape[1]).nonzero()[0] print(rows)
-
Considering a 10x3 matrix, extract rows with unequal values (e.g. [2,2,3]) (★★★★☆)
# Author: Robert Kern Z = np.random.randint(0,5,(10,3)) E = np.logical_and.reduce(Z[:,1:] == Z[:,:-1], axis=1) U = Z[~E] print(Z) print(U)
-
Convert a vector of ints into a matrix binary representation (★★★★☆)
# Author: Warren Weckesser I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128]) B = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int) print(B[:,::-1]) # Author: Daniel T. McDonald I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128], dtype=np.uint8) print(np.unpackbits(I[:, np.newaxis], axis=1))
-
Given a two dimensional array, how to extract unique rows ? (★★★★☆)
Note
See stackoverflow for explanations.
# Author: Jaime Fernández del Río Z = np.random.randint(0,2,(6,3)) T = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1]))) _, idx = np.unique(T, return_index=True) uZ = Z[idx] print(uZ)
-
Considering 2 vectors A & B, write the einsum equivalent of inner, outer, sum, and mul function (★★★★☆)
# Author: Alex Riley # Make sure to read: http://ajcr.net/Basic-guide-to-einsum/ np.einsum('i->', A) # np.sum(A) np.einsum('i,i->i', A, B) # A * B np.einsum('i,i', A, B) # np.inner(A, B) np.einsum('i,j', A, B) # np.outer(A, B)
-
Considering a path described by two vectors (X,Y), how to sample it using equidistant samples (★★★★★) ?
# Author: Bas Swinckels phi = np.arange(0, 10*np.pi, 0.1) a = 1 x = a*phi*np.cos(phi) y = a*phi*np.sin(phi) dr = (np.diff(x)**2 + np.diff(y)**2)**.5 # segment lengths r = np.zeros_like(x) r[1:] = np.cumsum(dr) # integrate path r_int = np.linspace(0, r.max(), 200) # regular spaced path x_int = np.interp(r_int, r, x) # integrate path y_int = np.interp(r_int, r, y)