zoukankan      html  css  js  c++  java
  • 100 numpy exercises

    100 numpy exercises

    A joint effort of the numpy community

    The goal is both to offer a quick reference for new and old users and to provide also a set of exercices for those who teach. If you remember having asked or answered a (short) problem, you can send a pull request. The format is:

    #. Find indices of non-zero elements from [1,2,0,0,4,0]
    
       .. code:: python
    
          # Author: Somebody
    
          print(np.nonzero([1,2,0,0,4,0]))
    

    Here is what the page looks like so far: http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html

    Repository is at: https://github.com/rougier/numpy-100

    Thanks to Michiaki Ariga, there is now a Julia version.

    1. Import the numpy package under the name np (★☆☆☆☆)

      import numpy as np
      

        

    2. Print the numpy version and the configuration (★☆☆☆☆)

      print(np.__version__)
      np.__config__.show()
    3. Create a null vector of size 10 (★☆☆☆☆)

      Z = np.zeros(10)
      print(Z)
    4. How to get the documentation of the numpy add function from the command line ? (★☆☆☆☆)

      python -c "import numpy; numpy.info(numpy.add)"
    5. Create a null vector of size 10 but the fifth value which is 1 (★☆☆☆☆)

      Z = np.zeros(10)
      Z[4] = 1
      print(Z)
    6. Create a vector with values ranging from 10 to 49 (★☆☆☆☆)

      Z = np.arange(10,50)
      print(Z)
    7. Reverse a vector (first element becomes last) (★☆☆☆☆)

      Z = np.arange(50)
      Z = Z[::-1]
    8. Create a 3x3 matrix with values ranging from 0 to 8 (★☆☆☆☆)

      Z = np.arange(9).reshape(3,3)
      print(Z)
    9. Find indices of non-zero elements from [1,2,0,0,4,0] (★☆☆☆☆)

      nz = np.nonzero([1,2,0,0,4,0])
      print(nz)
    10. Create a 3x3 identity matrix (★☆☆☆☆)

      Z = np.eye(3)
      print(Z)
    11. Create a 3x3x3 array with random values (★☆☆☆☆)

      Z = np.random.random((3,3,3))
      print(Z)
    12. Create a 10x10 array with random values and find the minimum and maximum values (★☆☆☆☆)

      Z = np.random.random((10,10))
      Zmin, Zmax = Z.min(), Z.max()
      print(Zmin, Zmax)
    13. Create a random vector of size 30 and find the mean value (★☆☆☆☆)

      Z = np.random.random(30)
      m = Z.mean()
      print(m)
    14. Create a 5x5 matrix with values 1,2,3,4 just below the diagonal (★★☆☆☆)

      Z = np.diag(1+np.arange(4),k=-1)
      print(Z)
    15. Create a 8x8 matrix and fill it with a checkerboard pattern (★★☆☆☆)

      Z = np.zeros((8,8),dtype=int)
      Z[1::2,::2] = 1
      Z[::2,1::2] = 1
      print(Z)
    16. Create a checkerboard 8x8 matrix using the tile function (★★☆☆☆)

      Z = np.tile( np.array([[0,1],[1,0]]), (4,4))
      print(Z)
    17. Normalize a 5x5 random matrix (★★☆☆☆)

      Z = np.random.random((5,5))
      Zmax, Zmin = Z.max(), Z.min()
      Z = (Z - Zmin)/(Zmax - Zmin)
      print(Z)
    18. Multiply a 5x3 matrix by a 3x2 matrix (real matrix product) (★★☆☆☆)

      Z = np.dot(np.ones((5,3)), np.ones((3,2)))
      print(Z)
    19. Create a 5x5 matrix with row values ranging from 0 to 4 (★★☆☆☆)

      Z = np.zeros((5,5))
      Z += np.arange(5)
      print(Z)
    20. Create a vector of size 10 with values ranging from 0 to 1, both excluded (★★☆☆☆)

      Z = np.linspace(0,1,12,endpoint=True)[1:-1]
      print(Z)
    21. Create a random vector of size 10 and sort it (★★☆☆☆)

      Z = np.random.random(10)
      Z.sort()
      print(Z)
    22. Consider two random array A anb B, check if they are equal (★★☆☆☆)

      A = np.random.randint(0,2,5)
      B = np.random.randint(0,2,5)
      equal = np.allclose(A,B)
      print(equal)
    23. Make an array immutable (read-only) (★★☆☆☆)

      Z = np.zeros(10)
      Z.flags.writeable = False
      Z[0] = 1
    24. Consider a random 10x2 matrix representing cartesian coordinates, convert them to polar coordinates (★★☆☆☆)

      Z = np.random.random((10,2))
      X,Y = Z[:,0], Z[:,1]
      R = np.sqrt(X**2+Y**2)
      T = np.arctan2(Y,X)
      print(R)
      print(T)
    25. Create random vector of size 10 and replace the maximum value by 0 (★★☆☆☆)

      Z = np.random.random(10)
      Z[Z.argmax()] = 0
      print(Z)
    26. Create a structured array with x and y coordinates covering the [0,1]x[0,1] area (★★☆☆☆)

      Z = np.zeros((10,10), [('x',float),('y',float)])
      Z['x'], Z['y'] = np.meshgrid(np.linspace(0,1,10),
                                   np.linspace(0,1,10))
      print(Z)
    27. Print the minimum and maximum representable value for each numpy scalar type (★★☆☆☆)

      for dtype in [np.int8, np.int32, np.int64]:
         print(np.iinfo(dtype).min)
         print(np.iinfo(dtype).max)
      for dtype in [np.float32, np.float64]:
         print(np.finfo(dtype).min)
         print(np.finfo(dtype).max)
         print(np.finfo(dtype).eps)
    28. Create a structured array representing a position (x,y) and a color (r,g,b) (★★☆☆☆)

       Z = np.zeros(10, [ ('position', [ ('x', float, 1),
                                         ('y', float, 1)]),
                          ('color',    [ ('r', float, 1),
                                         ('g', float, 1),
                                         ('b', float, 1)])])
      print(Z)
    29. Consider a random vector with shape (100,2) representing coordinates, find point by point distances (★★☆☆☆)

      Z = np.random.random((10,2))
      X,Y = np.atleast_2d(Z[:,0]), np.atleast_2d(Z[:,1])
      D = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2)
      print(D)
      
      # Much faster with scipy
      import scipy
      # Thanks Gavin Heverly-Coulson (#issue 1)
      import scipy.spatial
      
      Z = np.random.random((10,2))
      D = scipy.spatial.distance.cdist(Z,Z)
      print(D)
    30. Consider the following file:

      1,2,3,4,5
      6,,,7,8
      ,,9,10,11
      

      How to read it ? (★★☆☆☆)

      Z = np.genfromtxt("missing.dat", delimiter=",")
    31. Generate a generic 2D Gaussian-like array (★★☆☆☆)

      X, Y = np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10))
      D = np.sqrt(X*X+Y*Y)
      sigma, mu = 1.0, 0.0
      G = np.exp(-( (D-mu)**2 / ( 2.0 * sigma**2 ) ) )
      print(G)
    32. How to randomly place p elements in a 2D array ? (★★★☆☆)

      # Author: Divakar
      
      n = 10
      p = 3
      Z = np.zeros((n,n))
      np.put(Z, np.random.choice(range(n*n), p, replace=False),1)
    33. Subtract the mean of each row of a matrix (★★★☆☆)

      # Author: Warren Weckesser
      
      X = np.random.rand(5, 10)
      
      # Recent versions of numpy
      Y = X - X.mean(axis=1, keepdims=True)
      
      # Older versions of numpy
      Y = X - X.mean(axis=1).reshape(-1, 1)
    34. How to I sort an array by the nth column ? (★★★☆☆)

      # Author: Steve Tjoa
      
      Z = np.random.randint(0,10,(3,3))
      print(Z)
      print(Z[Z[:,1].argsort()])
    35. How to tell if a given 2D array has null columns ? (★★★☆☆)

      # Author: Warren Weckesser
      
      Z = np.random.randint(0,3,(3,10))
      print((~Z.any(axis=0)).any())
    36. Find the nearest value from a given value in an array (★★★☆☆)

      Z = np.random.uniform(0,1,10)
      z = 0.5
      m = Z.flat[np.abs(Z - z).argmin()]
      print(m)
    37. Consider a generator function that generates 10 integers and use it to build an array (★★★☆☆)

      def generate():
          for x in xrange(10):
              yield x
      Z = np.fromiter(generate(),dtype=float,count=-1)
      print(Z)
    38. Consider a given vector, how to add 1 to each element indexed by a second vector (be careful with repeated indices) ? (★★★☆☆)

      # Author: Brett Olsen
      
      Z = np.ones(10)
      I = np.random.randint(0,len(Z),20)
      Z += np.bincount(I, minlength=len(Z))
      print(Z)
    39. How to accumulate elements of a vector (X) to an array (F) based on an index list (I) ? (★★★☆☆)

      # Author: Alan G Isaac
      
      X = [1,2,3,4,5,6]
      I = [1,3,9,3,4,1]
      F = np.bincount(I,X)
      print(F)
    40. Considering a (w,h,3) image of (dtype=ubyte), compute the number of unique colors (★★★☆☆)

      # Author: Nadav Horesh
      
      w,h = 16,16
      I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte)
      F = I[...,0]*256*256 + I[...,1]*256 +I[...,2]
      n = len(np.unique(F))
      print(np.unique(I))
    41. Considering a four dimensions array, how to get sum over the last two axis at once ? (★★★☆☆)

      A = np.random.randint(0,10,(3,4,3,4))
      sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1)
      print(sum)
    42. Considering a one-dimensional vector D, how to compute means of subsets of D using a vector S of same size describing subset indices ? (★★★☆☆)

      # Author: Jaime Fernández del Río
      
      D = np.random.uniform(0,1,100)
      S = np.random.randint(0,10,100)
      D_sums = np.bincount(S, weights=D)
      D_counts = np.bincount(S)
      D_means = D_sums / D_counts
      print(D_means)
    43. How to get the diagonal of a dot product ? (★★★☆☆)

      # Author: Mathieu Blondel
      
      # Slow version
      np.diag(np.dot(A, B))
      
      # Fast version
      np.sum(A * B.T, axis=1)
      
      # Faster version
      np.einsum("ij,ji->i", A, B).
    44. Consider the vector [1, 2, 3, 4, 5], how to build a new vector with 3 consecutive zeros interleaved between each value ? (★★★☆☆)

      # Author: Warren Weckesser
      
      Z = np.array([1,2,3,4,5])
      nz = 3
      Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz))
      Z0[::nz+1] = Z
      print(Z0)
    45. Consider an array of dimension (5,5,3), how to mulitply it by an array with dimensions (5,5) ? (★★★☆☆)

      A = np.ones((5,5,3))
      B = 2*np.ones((5,5))
      print(A * B[:,:,None])
    46. How to swap two rows of an array ? (★★★☆☆)

      # Author: Eelco Hoogendoorn
      
      A = np.arange(25).reshape(5,5)
      A[[0,1]] = A[[1,0]]
      print(A)
    47. Consider a set of 10 triplets describing 10 triangles (with shared vertices), find the set of unique line segments composing all the triangles (★★★☆☆)

      # Author: Nicolas P. Rougier
      
      faces = np.random.randint(0,100,(10,3))
      F = np.roll(faces.repeat(2,axis=1),-1,axis=1)
      F = F.reshape(len(F)*3,2)
      F = np.sort(F,axis=1)
      G = F.view( dtype=[('p0',F.dtype),('p1',F.dtype)] )
      G = np.unique(G)
      print(G)
    48. Given an array C that is a bincount, how to produce an array A such that np.bincount(A) == C ? (★★★☆☆)

      # Author: Jaime Fernández del Río
      
      C = np.bincount([1,1,2,3,4,4,6])
      A = np.repeat(np.arange(len(C)), C)
      print(A)
    49. How to compute averages using a sliding window over an array ? (★★★☆☆)

      # Author: Jaime Fernández del Río
      
      def moving_average(a, n=3) :
          ret = np.cumsum(a, dtype=float)
          ret[n:] = ret[n:] - ret[:-n]
          return ret[n - 1:] / n
      Z = np.arange(20)
      print(moving_average(Z, n=3))
    50. Consider a one-dimensional array Z, build a two-dimensional array whose first row is (Z[0],Z[1],Z[2]) and each subsequent row is shifted by 1 (last row should be (Z[-3],Z[-2],Z[-1]) (★★★☆☆)

      # Author: Joe Kington / Erik Rigtorp
      from numpy.lib import stride_tricks
      
      def rolling(a, window):
          shape = (a.size - window + 1, window)
          strides = (a.itemsize, a.itemsize)
          return stride_tricks.as_strided(a, shape=shape, strides=strides)
      Z = rolling(np.arange(10), 3)
      print(Z)
    51. How to negate a boolean, or to change the sign of a float inplace ? (★★★☆☆)

      # Author: Nathaniel J. Smith
      
      Z = np.random.randint(0,2,100)
      np.logical_not(arr, out=arr)
      
      Z = np.random.uniform(-1.0,1.0,100)
      np.negative(arr, out=arr)
    52. Consider 2 sets of points P0,P1 describing lines (2d) and a point p, how to compute distance from p to each line i (P0[i],P1[i]) ? (★★★☆☆)

      def distance(P0, P1, p):
          T = P1 - P0
          L = (T**2).sum(axis=1)
          U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
          U = U.reshape(len(U),1)
          D = P0 + U*T - p
          return np.sqrt((D**2).sum(axis=1))
      
      P0 = np.random.uniform(-10,10,(10,2))
      P1 = np.random.uniform(-10,10,(10,2))
      p  = np.random.uniform(-10,10,( 1,2))
      print(distance(P0, P1, p))
    53. Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, how to compute distance from each point j (P[j]) to each line i (P0[i],P1[i]) ? (★★★☆☆)

      # Author: Italmassov Kuanysh
      # based on distance function from previous question
      P0 = np.random.uniform(-10, 10, (10,2))
      P1 = np.random.uniform(-10,10,(10,2))
      p = np.random.uniform(-10, 10, (10,2))
      print np.array([distance(P0,P1,p_i) for p_i in p])
    54. Consider an arbitrary array, write a function that extract a subpart with a fixed shape and centered on a given element (pad with a fill value when necessary) (★★★☆☆)

      # Author: Nicolas Rougier
      
      Z = np.random.randint(0,10,(10,10))
      shape = (5,5)
      fill  = 0
      position = (1,1)
      
      R = np.ones(shape, dtype=Z.dtype)*fill
      P  = np.array(list(position)).astype(int)
      Rs = np.array(list(R.shape)).astype(int)
      Zs = np.array(list(Z.shape)).astype(int)
      
      R_start = np.zeros((len(shape),)).astype(int)
      R_stop  = np.array(list(shape)).astype(int)
      Z_start = (P-Rs//2)
      Z_stop  = (P+Rs//2)+Rs%2
      
      R_start = (R_start - np.minimum(Z_start,0)).tolist()
      Z_start = (np.maximum(Z_start,0)).tolist()
      R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()
      Z_stop = (np.minimum(Z_stop,Zs)).tolist()
      
      r = [slice(start,stop) for start,stop in zip(R_start,R_stop)]
      z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)]
      R[r] = Z[z]
      print(Z)
      print(R)
    55. Consider an array Z = [1,2,3,4,5,6,7,8,9,10,11,12,13,14], how to generate an array R = [[1,2,3,4], [2,3,4,5], [3,4,5,6], ..., [11,12,13,14]] ? (★★★☆☆)

      # Author: Stefan van der Walt
      
      Z = np.arange(1,15,dtype=uint32)
      R = stride_tricks.as_strided(Z,(11,4),(4,4))
      print(R)
    56. Compute a matrix rank (★★★☆☆)

      # Author: Stefan van der Walt
      
      Z = np.random.uniform(0,1,(10,10))
      U, S, V = np.linalg.svd(Z) # Singular Value Decomposition
      rank = np.sum(S > 1e-10)
    57. Extract all the contiguous 3x3 blocks from a random 10x10 matrix (★★★☆☆)

      # Author: Chris Barker
      
      Z = np.random.randint(0,5,(10,10))
      n = 3
      i = 1 + (Z.shape[0]-3)
      j = 1 + (Z.shape[1]-3)
      C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides)
      print(C)
    58. Create a 2D array subclass such that Z[i,j] == Z[j,i] (★★★☆☆)

      # Author: Eric O. Lebigot
      # Note: only works for 2d array and value setting using indices
      
      class Symetric(np.ndarray):
          def __setitem__(self, (i,j), value):
              super(Symetric, self).__setitem__((i,j), value)
              super(Symetric, self).__setitem__((j,i), value)
      
      def symetric(Z):
          return np.asarray(Z + Z.T - np.diag(Z.diagonal())).view(Symetric)
      
      S = symetric(np.random.randint(0,10,(5,5)))
      S[2,3] = 42
      print(S)
    59. Consider a set of p matrices wich shape (n,n) and a set of p vectors with shape (n,1). How to compute the sum of of the p matrix products at once ? (result has shape (n,1)) (★★★☆☆)

      # Author: Stefan van der Walt
      
      p, n = 10, 20
      M = np.ones((p,n,n))
      V = np.ones((p,n,1))
      S = np.tensordot(M, V, axes=[[0, 2], [0, 1]])
      print(S)
      
      # It works, because:
      # M is (p,n,n)
      # V is (p,n,1)
      # Thus, summing over the paired axes 0 and 0 (of M and V independently),
      # and 2 and 1, to remain with a (n,1) vector.
    60. Consider a 16x16 array, how to get the block-sum (block size is 4x4) ? (★★★☆☆)

      # Author: Robert Kern
      
      Z = np.ones(16,16)
      k = 4
      S = np.add.reduceat(np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0),
                                             np.arange(0, Z.shape[1], k), axis=1)
    61. How to implement the Game of Life using numpy arrays ? (★★★☆☆)

      # Author: Nicolas Rougier
      
      def iterate(Z):
          # Count neighbours
          N = (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] +
               Z[1:-1,0:-2]                + Z[1:-1,2:] +
               Z[2:  ,0:-2] + Z[2:  ,1:-1] + Z[2:  ,2:])
      
          # Apply rules
          birth = (N==3) & (Z[1:-1,1:-1]==0)
          survive = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1)
          Z[...] = 0
          Z[1:-1,1:-1][birth | survive] = 1
          return Z
      
      Z = np.random.randint(0,2,(50,50))
      for i in range(100): Z = iterate(Z)
    62. Given an arbitrary number of vectors, build the cartesian product (every combinations of every item) (★★★☆☆)

      # Author: Stefan Van der Walt
      
      def cartesian(arrays):
          arrays = [np.asarray(a) for a in arrays]
          shape = (len(x) for x in arrays)
      
          ix = np.indices(shape, dtype=int)
          ix = ix.reshape(len(arrays), -1).T
      
          for n, arr in enumerate(arrays):
              ix[:, n] = arrays[n][ix[:, n]]
      
          return ix
      
      print (cartesian(([1, 2, 3], [4, 5], [6, 7])))
    63. How to create a record array from a regular array ? (★★★☆☆)

      Z = np.array([("Hello", 2.5, 3),
                    ("World", 3.6, 2)])
      R = np.core.records.fromarrays(Z.T,
                                     names='col1, col2, col3',
                                     formats = 'S8, f8, i8')
    64. Comsider a large vector Z, compute Z to the power of 3 using 3 different methods (★★★☆☆)

      Author: Ryan G.
      
      x = np.random.rand(5e7)
      
      %timeit np.power(x,3)
      1 loops, best of 3: 574 ms per loop
      
      %timeit x*x*x
      1 loops, best of 3: 429 ms per loop
      
      %timeit np.einsum('i,i,i->i',x,x,x)
      1 loops, best of 3: 244 ms per loop
    65. Consider two arrays A and B of shape (8,3) and (2,2). How to find rows of A that contain elements of each row of B regardless of the order of the elements in B ? (★★★★☆)

      # Author: Gabe Schwartz
      
      A = np.random.randint(0,5,(8,3))
      B = np.random.randint(0,5,(2,2))
      
      C = (A[..., np.newaxis, np.newaxis] == B)
      rows = (C.sum(axis=(1,2,3)) >= B.shape[1]).nonzero()[0]
      print(rows)
    66. Considering a 10x3 matrix, extract rows with unequal values (e.g. [2,2,3]) (★★★★☆)

      # Author: Robert Kern
      
      Z = np.random.randint(0,5,(10,3))
      E = np.logical_and.reduce(Z[:,1:] == Z[:,:-1], axis=1)
      U = Z[~E]
      print(Z)
      print(U)
    67. Convert a vector of ints into a matrix binary representation (★★★★☆)

      # Author: Warren Weckesser
      
      I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128])
      B = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int)
      print(B[:,::-1])
      
      # Author: Daniel T. McDonald
      
      I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128], dtype=np.uint8)
      print(np.unpackbits(I[:, np.newaxis], axis=1))
    68. Given a two dimensional array, how to extract unique rows ? (★★★★☆)

      Note

      See stackoverflow for explanations.

      # Author: Jaime Fernández del Río
      
      Z = np.random.randint(0,2,(6,3))
      T = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1])))
      _, idx = np.unique(T, return_index=True)
      uZ = Z[idx]
      print(uZ)
    69. Considering 2 vectors A & B, write the einsum equivalent of inner, outer, sum, and mul function (★★★★☆)

      # Author: Alex Riley
      # Make sure to read: http://ajcr.net/Basic-guide-to-einsum/
      
      np.einsum('i->', A)       # np.sum(A)
      np.einsum('i,i->i', A, B) # A * B
      np.einsum('i,i', A, B)    # np.inner(A, B)
      np.einsum('i,j', A, B)    # np.outer(A, B)
    70. Considering a path described by two vectors (X,Y), how to sample it using equidistant samples (★★★★★) ?

      # Author: Bas Swinckels
      
      phi = np.arange(0, 10*np.pi, 0.1)
      a = 1
      x = a*phi*np.cos(phi)
      y = a*phi*np.sin(phi)
      
      dr = (np.diff(x)**2 + np.diff(y)**2)**.5 # segment lengths
      r = np.zeros_like(x)
      r[1:] = np.cumsum(dr)                # integrate path
      r_int = np.linspace(0, r.max(), 200) # regular spaced path
      x_int = np.interp(r_int, r, x)       # integrate path
      y_int = np.interp(r_int, r, y)
  • 相关阅读:
    科普文,无论在哪选配计算机,都要懂得常识 (任务5)
    任务5 配机网站关注热点解读
    科普文,解析品牌机的配置特点,选配计算机可以这么做(任务4)
    任务4 解析品牌机配置
    立足于应用需求,看到整体性能,评价计算机的性能(任务3)
    科普文,分享计算机优化的套路,停掉不需要的进程(任务3)
    任务3对电脑进行评价,硬件健康,性能测试, WINDOWS体验指数
    任务2认知计算机系统(计算机系统是一个生态系统,分为硬件系统和软件系统,互为支撑)
    数据库程序接口——JDBC——API解读第一篇——建立连接的核心对象
    数据库程序接口——JDBC——API解读第二篇——执行SQL的核心对象
  • 原文地址:https://www.cnblogs.com/anyview/p/5228842.html
Copyright © 2011-2022 走看看