zoukankan      html  css  js  c++  java
  • 数论·梅森素数与完全数

      • 梅森数:$M_p=2^p-1$, $p$为素数。
      • 性质:若$M_p$为素数,则$p$为素数。
      • 完全数:若一个数$N$等与其所有非自身的约数之和,那么这个数就是完全数。
      • 性质:若$M_p$为素数,那么$M_p2^{p-1}=frac{M_p(M_p+1)}{2}$为完全数。
      • 性质:一个数的约数之和为$2$的幂次当且仅当它能被分解为不同梅森素数的乘积。

    相关习题:

    LA2995 Vivian's Probelm

    代码如下:

    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    #include <string>
    #include <queue>
    #include <map>
    #include <set>
    #include <ctime>
    #include <cmath>
    #include <iostream>
    #include <assert.h>
    #define PI acos(-1.)
    #pragma comment(linker, "/STACK:102400000,102400000")
    #define max(a, b) ((a) > (b) ? (a) : (b))
    #define min(a, b) ((a) < (b) ? (a) : (b))
    #define mp make_pair
    #define st first
    #define nd second
    #define keyn (root->ch[1]->ch[0])
    #define lson (u << 1)
    #define rson (u << 1 | 1)
    #define pii pair<int, int>
    #define pll pair<ll, ll>
    #define pb push_back
    #define type(x) __typeof(x.begin())
    #define foreach(i, j) for(type(j)i = j.begin(); i != j.end(); i++)
    #define FOR(i, s, t) for(int i = (s); i <= (t); i++)
    #define ROF(i, t, s) for(int i = (t); i >= (s); i--)
    #define dbg(x) cout << x << endl
    #define dbg2(x, y) cout << x << " " << y << endl
    #define clr(x, i) memset(x, (i), sizeof(x))
    #define maximize(x, y) x = max((x), (y))
    #define minimize(x, y) x = min((x), (y))
    using namespace std;
    typedef long long ll;
    const int int_inf = 0x3f3f3f3f;
    const ll ll_inf = 0x3f3f3f3f3f3f3f3f;
    const int INT_INF = (int)((1ll << 31) - 1);
    const double double_inf = 1e30;
    const double eps = 1e-14;
    typedef unsigned long long ul;
    inline int readint(){
        int x;
        scanf("%d", &x);
        return x;
    }
    inline int readstr(char *s){
        scanf("%s", s);
        return strlen(s);
    }
    //Here goes 2d geometry templates
    struct Point{
        double x, y;
        Point(double x = 0, double y = 0) : x(x), y(y) {}
    };
    typedef Point Vector;
    Vector operator + (Vector A, Vector B){
        return Vector(A.x + B.x, A.y + B.y);
    }
    Vector operator - (Point A, Point B){
        return Vector(A.x - B.x, A.y - B.y);
    }
    Vector operator * (Vector A, double p){
        return Vector(A.x * p, A.y * p);
    }
    Vector operator / (Vector A, double p){
        return Vector(A.x / p, A.y / p);
    }
    bool operator < (const Point& a, const Point& b){
        return a.x < b.x || (a.x == b.x && a.y < b.y);
    }
    int dcmp(double x){
        if(abs(x) < eps) return 0;
        return x < 0 ? -1 : 1;
    }
    bool operator == (const Point& a, const Point& b){
        return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
    }
    double Dot(Vector A, Vector B){
        return A.x * B.x + A.y * B.y;
    }
    double Len(Vector A){
        return sqrt(Dot(A, A));
    }
    double Angle(Vector A, Vector B){
        return acos(Dot(A, B) / Len(A) / Len(B));
    }
    double Cross(Vector A, Vector B){
        return A.x * B.y - A.y * B.x;
    }
    double Area2(Point A, Point B, Point C){
        return Cross(B - A, C - A);
    }
    Vector Rotate(Vector A, double rad){
        //rotate counterclockwise
        return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad));
    }
    Vector Normal(Vector A){
        double L = Len(A);
        return Vector(-A.y / L, A.x / L);
    }
    void Normallize(Vector &A){
        double L = Len(A);
        A.x /= L, A.y /= L;
    }
    Point GetLineIntersection(Point P, Vector v, Point Q, Vector w){
        Vector u = P - Q;
        double t = Cross(w, u) / Cross(v, w);
        return P + v * t;
    }
    double DistanceToLine(Point P, Point A, Point B){
        Vector v1 = B - A, v2 = P - A;
        return abs(Cross(v1, v2)) / Len(v1);
    }
    double DistanceToSegment(Point P, Point A, Point B){
        if(A == B) return Len(P - A);
        Vector v1 = B - A, v2 = P - A, v3 = P - B;
        if(dcmp(Dot(v1, v2)) < 0) return Len(v2);
        else if(dcmp(Dot(v1, v3)) > 0) return Len(v3);
        else return abs(Cross(v1, v2)) / Len(v1);
    }
    Point GetLineProjection(Point P, Point A, Point B){
        Vector v = B - A;
        return A + v * (Dot(v, P - A) / Dot(v, v));
    }
    bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2){
        //Line1:(a1, a2) Line2:(b1,b2)
        double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
               c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
        return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
    }
    bool OnSegment(Point p, Point a1, Point a2){
        return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 -p)) < 0;
    }
    Vector GetBisector(Vector v, Vector w){
        Normallize(v), Normallize(w);
        return Vector((v.x + w.x) / 2, (v.y + w.y) / 2);
    }
    
    bool OnLine(Point p, Point a1, Point a2){
        Vector v1 = p - a1, v2 = a2 - a1;
        double tem = Cross(v1, v2);
        return dcmp(tem) == 0;
    }
    struct Line{
        Point p;
        Vector v;
        Point point(double t){
            return Point(p.x + t * v.x, p.y + t * v.y);
        }
        Line(Point p, Vector v) : p(p), v(v) {}
    };
    struct Circle{
        Point c;
        double r;
        Circle(Point c, double r) : c(c), r(r) {}
        Circle(int x, int y, int _r){
            c = Point(x, y);
            r = _r;
        }
        Point point(double a){
            return Point(c.x + cos(a) * r, c.y + sin(a) * r);
        }
    };
    int GetLineCircleIntersection(Line L, Circle C, double &t1, double& t2, vector<Point>& sol){
        double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;
        double e = a * a + c * c, f = 2 * (a * b + c * d), g = b * b + d * d - C.r * C.r;
        double delta = f * f - 4 * e * g;
        if(dcmp(delta) < 0) return 0;
        if(dcmp(delta) == 0){
            t1 = t2 = -f / (2 * e); sol.pb(L.point(t1));
            return 1;
        }
        t1 = (-f - sqrt(delta)) / (2 * e); sol.pb(L.point(t1));
        t2 = (-f + sqrt(delta)) / (2 * e); sol.pb(L.point(t2));
        return 2;
    }
    double angle(Vector v){
        return atan2(v.y, v.x);
        //(-pi, pi]
    }
    int GetCircleCircleIntersection(Circle C1, Circle C2, vector<Point>& sol){
        double d = Len(C1.c - C2.c);
        if(dcmp(d) == 0){
            if(dcmp(C1.r - C2.r) == 0) return -1; //two circle duplicates
            return 0; //two circles share identical center
        }
        if(dcmp(C1.r + C2.r - d) < 0) return 0; //too close
        if(dcmp(abs(C1.r - C2.r) - d) > 0) return 0; //too far away
        double a = angle(C2.c - C1.c); // angle of vector(C1, C2)
        double da = acos((C1.r * C1.r + d * d - C2.r * C2.r) / (2 * C1.r * d));
        Point p1 = C1.point(a - da), p2 = C1.point(a + da);
        sol.pb(p1);
        if(p1 == p2) return 1;
        sol.pb(p2);
        return 2;
    }
    int GetPointCircleTangents(Point p, Circle C, Vector* v){
        Vector u = C.c - p;
        double dist = Len(u);
        if(dist < C.r) return 0;//p is inside the circle, no tangents
        else if(dcmp(dist - C.r) == 0){
            // p is on the circles, one tangent only
            v[0] = Rotate(u, PI / 2);
            return 1;
        }else{
            double ang = asin(C.r / dist);
            v[0] = Rotate(u, -ang);
            v[1] = Rotate(u, +ang);
            return 2;
        }
    }
    int GetCircleCircleTangents(Circle A, Circle B, Point* a, Point* b){
        //a[i] store point of tangency on Circle A of tangent i
        //b[i] store point of tangency on Circle B of tangent i
        //six conditions is in consideration
        int cnt = 0;
        if(A.r < B.r) { swap(A, B); swap(a, b); }
        int d2 = (A.c.x - B.c.x) * (A.c.x - B.c.x) + (A.c.y - B.c.y) * (A.c.y - B.c.y);
        int rdiff = A.r - B.r;
        int rsum = A.r + B.r;
        if(d2 < rdiff * rdiff) return 0; // one circle is inside the other
        double base = atan2(B.c.y - A.c.y, B.c.x - A.c.x);
        if(d2 == 0 && A.r == B.r) return -1; // two circle duplicates
        if(d2 == rdiff * rdiff){ // internal tangency
            a[cnt] = A.point(base); b[cnt] = B.point(base); cnt++;
            return 1;
        }
        double ang = acos((A.r - B.r) / sqrt(d2));
        a[cnt] = A.point(base + ang); b[cnt++] = B.point(base + ang);
        a[cnt] = A.point(base - ang); b[cnt++] = B.point(base - ang);
        if(d2 == rsum * rsum){
            //one internal tangent
            a[cnt] = A.point(base);
            b[cnt++] = B.point(base + PI);
        }else if(d2 > rsum * rsum){
            //two internal tangents
            double ang = acos((A.r + B.r) / sqrt(d2));
            a[cnt] = A.point(base + ang); b[cnt++] = B.point(base + ang + PI);
            a[cnt] = A.point(base - ang); b[cnt++] = B.point(base - ang + PI);
        }
        return cnt;
    }
    Point ReadPoint(){
        double x, y;
        scanf("%lf%lf", &x, &y);
        return Point(x, y);
    }
    Circle ReadCircle(){
        double x, y, r;
        scanf("%lf%lf%lf", &x, &y, &r);
        return Circle(x, y, r);
    }
    //Here goes 3d geometry templates
    struct Point3{
        double x, y, z;
        Point3(double x = 0, double y = 0, double z = 0) : x(x), y(y), z(z) {}
    };
    typedef Point3 Vector3;
    Vector3 operator + (Vector3 A, Vector3 B){
        return Vector3(A.x + B.x, A.y + B.y, A.z + B.z);
    }
    Vector3 operator - (Vector3 A, Vector3 B){
        return Vector3(A.x - B.x, A.y - B.y, A.z - B.z);
    }
    Vector3 operator * (Vector3 A, double p){
        return Vector3(A.x * p, A.y * p, A.z * p);
    }
    Vector3 operator / (Vector3 A, double p){
        return Vector3(A.x / p, A.y / p, A.z / p);
    }
    double Dot3(Vector3 A, Vector3 B){
        return A.x * B.x + A.y * B.y + A.z * B.z;
    }
    double Len3(Vector3 A){
        return sqrt(Dot3(A, A));
    }
    double Angle3(Vector3 A, Vector3 B){
        return acos(Dot3(A, B) / Len3(A) / Len3(B));
    }
    double DistanceToPlane(const Point3& p, const Point3 &p0, const Vector3& n){
        return abs(Dot3(p - p0, n));
    }
    Point3 GetPlaneProjection(const Point3 &p, const Point3 &p0, const Vector3 &n){
        return p - n * Dot3(p - p0, n);
    }
    Point3 GetLinePlaneIntersection(Point3 p1, Point3 p2, Point3 p0, Vector3 n){
        Vector3 v = p2 - p1;
        double t = (Dot3(n, p0 - p1) / Dot3(n, p2 - p1));
        return p1 + v * t;//if t in range [0, 1], intersection on segment
    }
    Vector3 Cross(Vector3 A, Vector3 B){
        return Vector3(A.y * B.z - A.z * B.y, A.z * B.x - A.x * B.z, A.x * B.y - A.y * B.x);
    }
    double Area3(Point3 A, Point3 B, Point3 C){
        return Len3(Cross(B - A, C - A));
    }
    class cmpt{
    public:
        bool operator () (const int &x, const int &y) const{
            return x > y;
        }
    };
    
    int Rand(int x, int o){
        //if o set, return [1, x], else return [0, x - 1]
        if(!x) return 0;
        int tem = (int)((double)rand() / RAND_MAX * x) % x;
        return o ? tem + 1 : tem;
    }
    ////////////////////////////////////////////////////////////////////////////////////
    ////////////////////////////////////////////////////////////////////////////////////
    void data_gen(){
        srand(time(0));
        freopen("in.txt", "w", stdout);
        int times = 100;
        printf("%d
    ", times);
        while(times--){
            int r = Rand(1000, 1), a = Rand(1000, 1), c = Rand(1000, 1);
            int b = Rand(r, 1), d = Rand(r, 1);
            int m = Rand(100, 1), n = Rand(m, 1);
            printf("%d %d %d %d %d %d %d
    ", n, m, a, b, c, d, r);
        }
    }
    
    struct cmpx{
        bool operator () (int x, int y) { return x > y; }
    };
    int debug = 1;
    int dx[] = {0, 0, 1, 1};
    int dy[] = {1, 0, 0, 1};
    //-------------------------------------------------------------------------
    const int maxn = 7e4 + 10;
    int prime[maxn], k;
    bool vis[maxn];
    int tb[] = {2, 3, 5, 7, 13, 17, 19, 31};
    void init(){
        k = 0;
        prime[k++] = 2;
        clr(vis, 0);
        for(int i = 3; i < maxn; i += 2){
            if(vis[i]) continue;
            prime[k++] = i;
            for(int j = i; j < maxn; j += i) vis[j] = 1;
        }
    }
    ll p[110];
    int pointer, k2;
    ll low_bit(ll x) { return x & (-x); }
    
    int check(ll num){
        ++num;
        ll tem = low_bit(num);
        if(tem != num) return -1;
        int ans = 0;
        while(tem) tem >>= 1, ++ans;
        FOR(i, 0, 7) if(tb[i] == ans - 1) return i;
    }
    
    int cal(int S){
        int ans = 0, cnt = 0;
        while(S){
            if(S & 1) ans += tb[cnt];
            S >>= 1, ++cnt;
        }
        return ans;
    }
    void factorize(ll num){
        int curS = 0;
        FOR(i, 0, k - 1){
            if(prime[i] > num) break;
            if(num % prime[i] == 0){
                int tem = check(prime[i]);
                if(tem < 0) return;
                int cnt = 0;
                while(num % prime[i] == 0) num /= prime[i], ++cnt;
                if(cnt > 1) return;
                curS |= 1 << tem;
            }
        }
        if(num != 1){
            int tem = check(num);
            if(tem < 0) return;
            curS |= 1 << tem;
        }
        p[k2++] = curS;
    }
    //-------------------------------------------------------------------------
    int main(){
        //data_gen(); return 0;
        //C(); return 0;
        debug = 1;
        ///////////////////////////////////////////////////////////////////////////////////////////////////////////////
        if(debug) freopen("in.txt", "r", stdin);
        //freopen("in.txt", "w", stdout);
        init();
        while(~scanf("%d", &pointer)){
            FOR(i, 1, pointer) scanf("%lld", &p[i]);
            k2 = 0;
            FOR(i, 1, pointer) factorize(p[i]);
            //dbg(k2);
            int state[2][1 << 10];
            clr(state, 0);
            state[0][0] = 1;
            int o = 0;
            FOR(i, 0, k2 - 1){
                int lim = 1 << 10;
                int no = o ^ 1;
                clr(state[no], 0);
                FOR(j, 0, lim - 1) if(state[o][j] && !(p[i] & j)){
                    state[no][j | p[i]] = 1;
                }
                FOR(j, 0, lim - 1) if(state[o][j]) state[no][j] = 1;
                o = no;
            }
            int ans = 0;
            ROF(i, (1 << 10) - 1, 0) if(state[o][i]) maximize(ans, cal(i));
            if(!ans) puts("NO");
            else printf("%d
    ", ans);
        }
        //////////////////////////////////////////////////////////////////////////////////////////////////////////////
        return 0;
    }
    code:
  • 相关阅读:
    20.Docker Swarm集群
    Phalcon下命令行应用(command line applications)
    Mysql 命令备忘
    PHPExcel+phalcon+yii批量导入
    Yii 之分页 + bootstrap
    PHPMailer+phalcon中使用
    Phalcon之分页
    虚拟机中ip和host设置问题
    php RSS订阅功能
    ubuntu/linux下设置永久路由
  • 原文地址:https://www.cnblogs.com/astoninfer/p/5733794.html
Copyright © 2011-2022 走看看