zoukankan      html  css  js  c++  java
  • POJ 3176, Cow Bowling

    Time Limit: 1000MS  Memory Limit: 65536K
    Total Submissions: 5823  Accepted: 3802


    Description
    The cows don't use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this:

              7

            3   8

          8   1   0

        2   7   4   4

      4   5   2   6   5
    Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow's score is the sum of the numbers of the cows visited along the way. The cow with the highest score wins that frame.

    Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.

     

    Input
    Line 1: A single integer, N

    Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.

     

    Output
    Line 1: The largest sum achievable using the traversal rules

     

    Sample Input
    5
    7
    3 8
    8 1 0
    2 7 4 4
    4 5 2 6 5

     

    Sample Output
    30

     

    Hint
    Explanation of the sample:

              7

             *

            3   8

           *

          8   1   0

           *

        2   7   4   4

           *

      4   5   2   6   5
    The highest score is achievable by traversing the cows as shown above.

     

    Source
    USACO 2005 December Bronze


    // POJ3176.cpp : Defines the entry point for the console application.
    //

    #include 
    <iostream>
    #include 
    <algorithm>
    using namespace std;

    int main(int argc, char* argv[])
    {
        
    int N;
        scanf(
    "%d"&N);

        
    int balls[350][350];
        
    for (int i = 0; i < N; ++i)
            
    for (int j = 0; j <=i; ++j) scanf("%d"&balls[i][j]);


        
    int DP[350];
        memset(DP, 
    0sizeof(DP));

        DP[
    0= balls[0][0];
        
    for (int i = 1; i < N; ++i)
            
    for (int j = i; j >=0--j)
            {
                
    if(j == i) DP[j] = DP[j - 1+ balls[i][j];
                
    else if (j == 0)  DP[j] = DP[j] + balls[i][j];
                
    else
                    DP[j] 
    = max(DP[j - 1],DP[j]) + balls[i][j];
            };

        cout 
    << *max_element(&DP[0], &DP[N])<<endl;
        
    return 0;
    }

  • 相关阅读:
    Regex Expression的资料和笔记整理
    27个提升效率的iOS开源库推荐
    IOS-Swift、Objective-C、C++混合编程
    《极客学院 --NSAttributedString 使用详解-4-UITextKit 简介》学习笔记(待处理)
    前端开发学习网站
    为Xcode添加和备份快捷代码
    Swift语言与Objective-C语言混合编程
    《慕客网:IOS动画案例之会跳动的登入界面(下)》学习笔记 -Sketch的使用
    《慕客网:IOS动画案例之会跳动的登入界面(上)》学习笔记 -Sketch的使用
    关于移动端架构的好的学习网站
  • 原文地址:https://www.cnblogs.com/asuran/p/1582443.html
Copyright © 2011-2022 走看看