zoukankan      html  css  js  c++  java
  • NumPy arrays and TensorFlow Tensors的区别和联系

    1,tensor的特点

    • Tensors can be backed by accelerator memory (like GPU, TPU).
    • Tensors are immutable

    2,双向转换

    • TensorFlow operations automatically convert NumPy ndarrays to Tensors.
    • NumPy operations automatically convert Tensors to NumPy ndarrays

    3,转换的代价

    Tensors can be explicitly converted to NumPy ndarrays by invoking the .numpy() method on them. These conversions are typically cheap as the array and Tensor share the underlying memory representation if possible. However, sharing the underlying representation isn't always possible since the Tensor may be hosted in GPU memory while NumPy arrays are always backed by host memory, and the conversion will thus involve a copy from GPU to host memory.

    4,使用tensor时如何测定和选择gpu

    x = tf.random_uniform([3, 3])

    print("Is there a GPU available: "),
    print(tf.test.is_gpu_available())

    print("Is the Tensor on GPU #0: "),
    print(x.device.endswith('GPU:0'))

    print(tf.test.is_built_with_cuda())

    5,显式指定运行的xpu

    import time

    def time_matmul(x):
    start = time.time()
    for loop in range(10):
    tf.matmul(x, x)

    result = time.time()-start

    print("10 loops: {:0.2f}ms".format(1000*result))


    # Force execution on CPU
    print("On CPU:")
    with tf.device("CPU:0"):
    x = tf.random_uniform([900, 900])
    assert x.device.endswith("CPU:0")
    time_matmul(x)

    # Force execution on GPU #0 if available
    if tf.test.is_gpu_available():
    with tf.device("GPU:0"): # Or GPU:1 for the 2nd GPU, GPU:2 for the 3rd etc.
    x = tf.random_uniform([1000, 1000])
    assert x.device.endswith("GPU:0")
    time_matmul(x)

  • 相关阅读:
    面试java_后端面经_5
    头条后端面经_1面
    面试java后端面经_2
    java后端开发面经 数据库相关
    用友java后端开发面经
    面试java后端面经_4
    维恩贝特面试JAVA后台开发
    面试java后端面经_3
    世纪龙校招java开发一、二面 面经
    AndroidWebView使用
  • 原文地址:https://www.cnblogs.com/augustone/p/10506893.html
Copyright © 2011-2022 走看看