zoukankan      html  css  js  c++  java
  • #Marks for some questions

    Contents

    1. Mathematical Analysis
    2. Real Analysis
    3. Functional Analysis
    4. Matrix Analysis
    • Mathematical Analysis

     1.[2014-08-29] $f$ is uniformly continuous on $[a,b]$, and $int_a^infty  {fleft( t ight)dt} $ is convergent. Prove that $fleft( x ight) o 0$ as $x o infty $.

    2.[2014-09-06] Suppose $f$ is continuous on$[a,b]$ and differentiable in $(a,b)$. If there exists $c in (a,b)$ s.t. $f'left( c ight) = 0$, prove that there exists $zeta  in left( {a,b} ight)$ s.t. $f'left( zeta  ight) = frac{{fleft( zeta  ight) - fleft( a ight)}}{{b - a}}$.

    3.[2014-09-20] Suppose $f$ is continuous in $(a,  infty )$ and $mathop {lim }limits_{x o infty } sin fleft( x ight) = 1$. Prove that $mathop {lim }limits_{x o infty } fleft( x ight)$ exisits.

    • Real Analysis

    1.[2014-08-12] $g$ is a real function on a closed interval $left[ {a,b} ight]$ and $c le gleft( x ight) le d$ where $c,d e  pm infty $. Let $H = left{ {x in left( {a,b} ight):g'left( x ight){ m{ ~exists~ and ~}}g'left( x ight) e 0} ight}$. If $E subseteq left[ {c,d} ight]$ and $mleft( E ight) = 0$ where $m$ is Lebesgue measure, then does $mleft( {{g^{ - 1}}left( E ight) cap H} ight) = 0$? How about $c =  - infty $ & $d = infty $?

    2.[2014-08-13] If $f$ is integrable, then the set $Nleft( f ight) = left{ {x:fleft( x ight) e 0} ight}$ is $sigma $-finite.

    3.[2014-08-16] If $fleft( t ight)$ is Lebesgue-integrable over $left( { - infty , + infty } ight)$ and if $ - infty  < a < b < infty $, then for any real nubmer $h$,[int_{left[ {a,b} ight]} {fleft( {x + h} ight)dx}  = int_{left[ {a + h,b + h} ight]} {fleft( x ight)dx}. ]

    4.[2014-10-18] Here are some observations regarding the set operation $A + B$.

    (a) Show that if either $A$ and $B$ is open, then $A + B$ is open.

    (b) Show that if $A$ and $B$ are closed, then $A + B$ is measurable.

    (c) Show, however, that $A + B$ might not be closed even though $A$ and B are closed.

    • Functional Analysis
    • Matrix Analysis
  • 相关阅读:
    codevs 1115 开心的金明
    POJ 1125 Stockbroker Grapevine
    POJ 2421 constructing roads
    codevs 1390 回文平方数 USACO
    codevs 1131 统计单词数 2011年NOIP全国联赛普及组
    codevs 1313 质因数分解
    洛谷 绕钉子的长绳子
    洛谷 P1276 校门外的树(增强版)
    codevs 2627 村村通
    codevs 1191 数轴染色
  • 原文地址:https://www.cnblogs.com/aujun/p/3907150.html
Copyright © 2011-2022 走看看