Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7
and target 7
,
A solution set is: [7]
[2, 2, 3]
思路:在集合中找出组合之和为目标值的集合。这让我们很容易联想到01背包问题,递归回溯累加到目标值。
class Solution { public: void resolve(vector<int> &candidates,int target,int start,int sum,vector<int> &path,vector<vector<int> > &result) { if(sum>target) return; if(sum==target) { result.push_back(path); return; } for(int i=start;i<candidates.size();i++) { path.push_back(candidates[i]); resolve(candidates,target,i,sum+candidates[i],path,result); path.pop_back(); } } vector<vector<int> > combinationSum(vector<int> &candidates, int target) { vector<vector<int> > result; vector<int> path; sort(candidates.begin(),candidates.end()); result.clear(); path.clear(); resolve(candidates,target,0,0,path,result); return result; } };