zoukankan      html  css  js  c++  java
  • tensorflow进阶篇-4(损失函数2)

    Hinge损失函数主要用来评估支持向量机算法,但有时也用来评估神经网络算法。下面的示例中是计算两个目标类(-1,1)之间的损失。下面的代码中,使用目标值1,所以预测值离1越近,损失函数值越小:

    # Use for predicting binary (-1, 1) classes
    # L = max(0, 1 - (pred * actual))
    hinge_y_vals = tf.maximum(0., 1. - tf.multiply(target, x_vals))
    hinge_y_out = sess.run(hinge_y_vals)

    两类交叉函数熵损失函数(Cross-entropy loss)有时也作为逻辑损失函数,比如,当预测两类目标0或者1时,希望度量函数预测值到真实分类值(0或者1)的距离,这个距离经常是0到1之间的实数。

    # L = -actual * (log(pred)) - (1-actual)(log(1-pred))
    xentropy_y_vals = - tf.multiply(target, tf.log(x_vals)) - tf.multiply((1. - target), tf.log(1. - x_vals))
    xentropy_y_out = sess.run(xentropy_y_vals)

    Sigmoid交叉熵损失函数与上一个损失函数非常类似,有一点不同的是,它先把想x_vals值通过sigmoid函数转换,再计算交叉熵损失:

    # L = -actual * (log(sigmoid(pred))) - (1-actual)(log(1-sigmoid(pred)))
    # or
    # L = max(actual, 0) - actual * pred + log(1 + exp(-abs(actual)))
    xentropy_sigmoid_y_vals = tf.nn.sigmoid_cross_entropy_with_logits(logits=x_vals, labels=targets)
    xentropy_sigmoid_y_out = sess.run(xentropy_sigmoid_y_vals)

    加权交叉熵损失函数(Weighted cross entropy loss)是Sigmoid交叉熵损失函数的加权,对正目标加权。

    # L = -actual * (log(pred)) * weights - (1-actual)(log(1-pred))
    # or
    # L = (1 - pred) * actual + (1 + (weights - 1) * pred) * log(1 + exp(-actual))
    weight = tf.constant(0.5) #正目标加权 权值为0.5
    xentropy_weighted_y_vals = tf.nn.weighted_cross_entropy_with_logits(logits=x_vals,targets=targets, pos_weight=weight)
    xentropy_weighted_y_out = sess.run(xentropy_weighted_y_vals)

    利用matplotlib绘画出以上的损失函数为:

    完整代码:

    import matplotlib.pyplot as plt
    import tensorflow as tf
    from tensorflow.python.framework import ops
    ops.reset_default_graph()
    
    # Create graph
    sess = tf.Session()
    
    x_vals = tf.linspace(-3., 5., 500)
    target = tf.constant(1.)
    targets = tf.fill([500,], 1.)
    
    # Hinge loss
    # Use for predicting binary (-1, 1) classes
    # L = max(0, 1 - (pred * actual))
    hinge_y_vals = tf.maximum(0., 1. - tf.multiply(target, x_vals))
    hinge_y_out = sess.run(hinge_y_vals)
    
    # Cross entropy loss
    # L = -actual * (log(pred)) - (1-actual)(log(1-pred))
    xentropy_y_vals = - tf.multiply(target, tf.log(x_vals)) - tf.multiply((1. - target), tf.log(1. - x_vals))
    xentropy_y_out = sess.run(xentropy_y_vals)
    
    # Sigmoid entropy loss
    # L = -actual * (log(sigmoid(pred))) - (1-actual)(log(1-sigmoid(pred)))
    # or
    # L = max(actual, 0) - actual * pred + log(1 + exp(-abs(actual)))
    xentropy_sigmoid_y_vals = tf.nn.sigmoid_cross_entropy_with_logits(logits=x_vals, labels=targets)
    xentropy_sigmoid_y_out = sess.run(xentropy_sigmoid_y_vals)
    
    # Weighted (softmax) cross entropy loss
    # L = -actual * (log(pred)) * weights - (1-actual)(log(1-pred))
    # or
    # L = (1 - pred) * actual + (1 + (weights - 1) * pred) * log(1 + exp(-actual))
    weight = tf.constant(0.5)
    xentropy_weighted_y_vals = tf.nn.weighted_cross_entropy_with_logits(logits=x_vals,targets=targets, pos_weight=weight)
    xentropy_weighted_y_out = sess.run(xentropy_weighted_y_vals)
    
    # Plot the output
    x_array = sess.run(x_vals)
    plt.plot(x_array, hinge_y_out, 'b-', label='Hinge Loss')
    plt.plot(x_array, xentropy_y_out, 'r--', label='Cross Entropy Loss')
    plt.plot(x_array, xentropy_sigmoid_y_out, 'k-.', label='Cross Entropy Sigmoid Loss')
    plt.plot(x_array, xentropy_weighted_y_out, 'g:', label='Weighted Cross Entropy Loss (x0.5)')
    plt.ylim(-1.5, 3)
    #plt.xlim(-1, 3)
    plt.legend(loc='lower right', prop={'size': 11})
    plt.show()

    Softmax交叉熵损失函数(Softmax cross-entropy loss)是作用于非归一化的输出结果只针对单个目标分类的计算损失。通过softmax函数将输出结果转化成概率分布,然后计算真值概率分布的损失:

    # Softmax entropy loss
    # L = -actual * (log(softmax(pred))) - (1-actual)(log(1-softmax(pred)))
    unscaled_logits = tf.constant([[1., -3., 10.]])
    target_dist = tf.constant([[0.1, 0.02, 0.88]])
    softmax_xentropy = tf.nn.softmax_cross_entropy_with_logits(logits=unscaled_logits, labels=target_dist)
    print(sess.run(softmax_xentropy))

    输出:[ 1.16012561]

    稀疏Softmax交叉熵损失函数(Sparse Softmax cross-entropy loss)和上一个损失函数类似,它是把目标函数分类为true的转化成index,而Softmax交叉熵损失函数将目标转成概率分布:

    # Sparse entropy loss
    # L = sum( -actual * log(pred) )
    unscaled_logits = tf.constant([[1., -3., 10.]])
    sparse_target_dist = tf.constant([2])
    sparse_xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=unscaled_logits, labels=sparse_target_dist)
    print(sess.run(sparse_xentropy))

    输出:[ 0.00012564]

    两类交叉熵损失函数有时也作为逻辑损失函数。

  • 相关阅读:
    剖析Vue原理&实现双向绑定MVVM
    js处理异步的几种方式
    【转】从Vue.js源码看异步更新DOM策略及nextTick
    js中获取css样式属性值
    原生JS节点操作
    圣杯布局和双飞翼布局的作用和区别
    vue自定义插件-弹框
    MongoDB 数据库创建删除、表创建删除、数据增删改查
    Vue组件之间数据交互与通信
    Vue中的计算属性与$watch
  • 原文地址:https://www.cnblogs.com/ybf-yyj/p/9085324.html
Copyright © 2011-2022 走看看