zoukankan      html  css  js  c++  java
  • 大数据量下的集合过滤—Bloom Filter

    算法背景

    如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定。链表、树、散列表(又叫哈希表,Hash table)等等数据结构都是这种思路,存储位置要么是磁盘,要么是内存。很多时候要么是以时间换空间,要么是以空间换时间。

    在响应时间要求比较严格的情况下,如果我们存在内里,那么随着集合中元素的增加,我们需要的存储空间越来越大,以及检索的时间越来越长,导致内存开销太大、时间效率变低。

    此时需要考虑解决的问题就是,在数据量比较大的情况下,既满足时间要求,又满足空间的要求。即我们需要一个时间和空间消耗都比较小的数据结构和算法。Bloom Filter就是一种解决方案。

    Bloom Filter 概念

    布隆过滤器(英语:Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。

    Bloom Filter 原理

    布隆过滤器的原理是,当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点,把它们置为1。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些点有任何一个0,则被检元素一定不在;如果都是1,则被检元素很可能在。这就是布隆过滤器的基本思想。

    Bloom Filter跟单哈希函数Bit-Map不同之处在于:Bloom Filter使用了k个哈希函数,每个字符串跟k个bit对应。从而降低了冲突的概率。

     

    Bloom Filter的缺点

    bloom filter之所以能做到在时间和空间上的效率比较高,是因为牺牲了判断的准确率、删除的便利性

    • 存在误判,可能要查到的元素并没有在容器中,但是hash之后得到的k个位置上值都是1。如果bloom filter中存储的是黑名单,那么可以通过建立一个白名单来存储可能会误判的元素。
    • 删除困难。一个放入容器的元素映射到bit数组的k个位置上是1,删除的时候不能简单的直接置为0,可能会影响其他元素的判断。可以采用Counting Bloom Filter

    Bloom Filter 实现

    布隆过滤器有许多实现与优化,Guava中就提供了一种Bloom Filter的实现。

    在使用bloom filter时,绕不过的两点是预估数据量n以及期望的误判率fpp,

    在实现bloom filter时,绕不过的两点就是hash函数的选取以及bit数组的大小。

    对于一个确定的场景,我们预估要存的数据量为n,期望的误判率为fpp,然后需要计算我们需要的Bit数组的大小m,以及hash函数的个数k,并选择hash函数

    (1)Bit数组大小选择 

         根据预估数据量n以及误判率fpp,bit数组大小的m的计算方式:

    (2)哈希函数选择

               由预估数据量n以及bit数组长度m,可以得到一个hash函数的个数k:

               哈希函数的选择对性能的影响应该是很大的,一个好的哈希函数要能近似等概率的将字符串映射到各个Bit。选择k个不同的哈希函数比较麻烦,一种简单的方法是选择一个哈希函数,然后送入k个不同的参数。

    哈希函数个数k、位数组大小m、加入的字符串数量n的关系可以参考Bloom Filters - the mathBloom_filter-wikipedia

    看看Guava中BloomFilter中对于m和k值计算的实现,在com.google.common.hash.BloomFilter类中:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    /**
     * 计算 Bloom Filter的bit位数m
     *
     * <p>See http://en.wikipedia.org/wiki/Bloom_filter#Probability_of_false_positives for the
     * formula.
     *
     * @param n 预期数据量
     * @param p 误判率 (must be 0 < p < 1)
     */ 
    @VisibleForTesting 
    static long optimalNumOfBits(long n, double p) { 
      if (p == 0) { 
        p = Double.MIN_VALUE; 
      
      return (long) (-n * Math.log(p) / (Math.log(2) * Math.log(2))); 
        
        
        
        
    /**
     * 计算最佳k值,即在Bloom过滤器中插入的每个元素的哈希数
     *
     * <p>See http://en.wikipedia.org/wiki/File:Bloom_filter_fp_probability.svg for the formula.
     *
     * @param n 预期数据量
     * @param m bloom filter中总的bit位数 (must be positive)
     */ 
    @VisibleForTesting 
    static int optimalNumOfHashFunctions(long n, long m) { 
      // (m / n) * log(2), but avoid truncation due to division! 
      return Math.max(1, (int) Math.round((double) m / n * Math.log(2))); 

      

    BloomFilter实现的另一个重点就是怎么利用hash函数把数据映射到bit数组中。Guava的实现是对元素通过MurmurHash3计算hash值,将得到的hash值取高8个字节以及低8个字节进行计算,以得当前元素在bit数组中对应的多个位置。MurmurHash3算法详见:Murmur哈希,于2008年被发明。这个算法hbase,redis,kafka都在使用。

    这个过程的实现在两个地方:

    • 将数据放入bloom filter中
    • 判断数据是否已在bloom filter中

    这两个地方的实现大同小异,区别只是,前者是put数据,后者是查数据。

    这里看一下put的过程,hash策略以MURMUR128_MITZ_64为例:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    public <T> boolean put( 
        T object, Funnel<? super T> funnel, int numHashFunctions, LockFreeBitArray bits) { 
      long bitSize = bits.bitSize(); 
        
      //利用MurmurHash3得到数据的hash值对应的字节数组 
      byte[] bytes = Hashing.murmur3_128().hashObject(object, funnel).getBytesInternal(); 
        
        
      //取低8个字节、高8个字节,转成long类型 
      long hash1 = lowerEight(bytes); 
      long hash2 = upperEight(bytes); 
        
      boolean bitsChanged = false
        
        
      //这里的combinedHash = hash1 + i * hash2 
      long combinedHash = hash1; 
        
        
      //根据combinedHash,得到放入的元素在bit数组中的k个位置,将其置1 
      for (int i = 0; i < numHashFunctions; i++) { 
        bitsChanged |= bits.set((combinedHash & Long.MAX_VALUE) % bitSize); 
        combinedHash += hash2; 
      
      return bitsChanged; 

      

    判断元素是否在bloom filter中的方法mightContain与上面的实现基本一致,不再赘述。

    Bloom Filter的使用

    简单写个demo,用法很简单,类似HashMap

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    package com.qunar.sage.wang.common.bloom.filter; 
        
    import com.google.common.base.Charsets; 
    import com.google.common.hash.BloomFilter; 
    import com.google.common.hash.Funnel; 
    import com.google.common.hash.Funnels; 
    import com.google.common.hash.PrimitiveSink; 
    import lombok.AllArgsConstructor; 
    import lombok.Builder; 
    import lombok.Data; 
    import lombok.ToString; 
        
    /**
     * BloomFilterTest
     *
     * @author sage.wang
     * @date 18-5-14 下午5:02
     */ 
    public class BloomFilterTest { 
            
        public static void main(String[] args) { 
            long expectedInsertions = 10000000
            double fpp = 0.00001
        
            BloomFilter<CharSequence> bloomFilter = BloomFilter.create(Funnels.stringFunnel(Charsets.UTF_8), expectedInsertions, fpp); 
        
            bloomFilter.put("aaa"); 
            bloomFilter.put("bbb"); 
            boolean containsString = bloomFilter.mightContain("aaa"); 
            System.out.println(containsString); 
        
            BloomFilter<Email> emailBloomFilter = BloomFilter 
                    .create((Funnel<Email>) (from, into) -> into.putString(from.getDomain(), Charsets.UTF_8), 
                            expectedInsertions, fpp); 
        
            emailBloomFilter.put(new Email("sage.wang""quanr.com")); 
            boolean containsEmail = emailBloomFilter.mightContain(new Email("sage.wangaaa""quanr.com")); 
            System.out.println(containsEmail); 
        
        
        @Data 
        @Builder 
        @ToString 
        @AllArgsConstructor 
        public static class Email { 
            private String userName; 
            private String domain; 
        
        

      

    Bloom Filter的应用

    常见的几个应用场景:

    • cerberus在收集监控数据的时候, 有的系统的监控项量会很大, 需要检查一个监控项的名字是否已经被记录到db过了, 如果没有的话就需要写入db.
    • 爬虫过滤已抓到的url就不再抓,可用bloom filter过滤
    • 垃圾邮件过滤。如果用哈希表,每存储一亿个 email地址,就需要 1.6GB的内存(用哈希表实现的具体办法是将每一个 email地址对应成一个八字节的信息指纹,然后将这些信息指纹存入哈希表,由于哈希表的存储效率一般只有 50%,因此一个 email地址需要占用十六个字节。一亿个地址大约要 1.6GB,即十六亿字节的内存)。因此存贮几十亿个邮件地址可能需要上百 GB的内存。而Bloom Filter只需要哈希表 1/8到 1/4 的大小就能解决同样的问题。
  • 相关阅读:
    css注入获取网页中的数据
    跨路径读取cookie
    python 网络爬虫介绍
    ssh无法登录,提示Connection closing...Socket close.
    Tengine 添加第三方监控模块nginx-module-vts
    使用nginx很卡之strace命令
    MySQL清理慢查询日志slow_log的方法
    Python之json模块
    zabbix3调用接口发送短信告警
    RabbitMQ 安装 rabbitmq_delayed_message_exchange插件
  • 原文地址:https://www.cnblogs.com/baobeiqi-e/p/11570803.html
Copyright © 2011-2022 走看看