zoukankan      html  css  js  c++  java
  • 【原创】大叔问题定位分享(11)Spark中对大表子查询加limit为什么会报Broadcast超时错误

    当两个表需要join时,如果一个是大表,一个是小表,正常的map-reduce流程需要shuffle,这会导致大表数据在节点间网络传输,常见的优化方式是将小表读到内存中并广播到大表处理,避免shuffle+reduce;

    在hive中叫mapjoin(map-side join),配置为 hive.auto.convert.join

    在spark中叫BroadcastHashJoin (broadcast hash join)

    Spark SQL uses broadcast join (aka broadcast hash join) instead of hash join to optimize join queries when the size of one side data is below spark.sql.autoBroadcastJoinThreshold.

    Broadcast join can be very efficient for joins between a large table (fact) with relatively small tables (dimensions) that could then be used to perform a star-schema join. It can avoid sending all data of the large table over the network.

    有几种方式可以触发:

    1)sql hint (从spark 2.3版本开始支持)

    SELECT /*+ MAPJOIN(b) */ ...
    
    SELECT /*+ BROADCASTJOIN(b) */ ...
    
    SELECT /*+ BROADCAST(b) */ ...

    2)broadcast function:DataFrame.broadcast

    testTable3= testTable1.join(broadcast(testTable2), Seq("id"), "right_outer")

    3)自动优化

    org.apache.spark.sql.execution.SparkStrategies.JoinSelection

        private def canBroadcast(plan: LogicalPlan): Boolean = {
          plan.statistics.isBroadcastable ||
    
            (plan.statistics.sizeInBytes >= 0 &&
    
              plan.statistics.sizeInBytes <= conf.autoBroadcastJoinThreshold)
    
        }

    例如:

    spark-sql> explain select * from big_table1 a, (select * from big_table2 limit 10) b where a.id = b.id;

    18/09/17 18:14:09 339 WARN Utils66: Truncated the string representation of a plan since it was too large. This behavior can be adjusted by setting 'spark.debug.maxToStringFields' in SparkEnv.conf.

    == Physical Plan ==

    BroadcastHashJoin [id#5], [id#14], Inner, BuildRight

    :- *Filter isnotnull(id#5)

    :  +- HiveTableScan [name#4, id#5], MetastoreRelation big_table1

    +- BroadcastExchange HashedRelationBroadcastMode(List(input[6, string, false]))

       +- Filter isnotnull(id#14)

          +- GlobalLimit 10

             +- Exchange SinglePartition

                +- LocalLimit 10

                   +- HiveTableScan [id#14, ... 187 more fields], MetastoreRelation big_table2

    Time taken: 4.216 seconds, Fetched 1 row(s)

    BroadcastExchange 执行过程为

    org.apache.spark.sql.execution.exchange.BroadcastExchangeExec

      override protected[sql] def doExecuteBroadcast[T](): broadcast.Broadcast[T] = {
    
        ThreadUtils.awaitResultInForkJoinSafely(relationFuture, timeout)
    
          .asInstanceOf[broadcast.Broadcast[T]]
    
      }

    其中timeout是指spark.sql.broadcastTimeout,默认300s

      private lazy val relationFuture: Future[broadcast.Broadcast[Any]] = {
    
        // broadcastFuture is used in "doExecute". Therefore we can get the execution id correctly here.
    
        val executionId = sparkContext.getLocalProperty(SQLExecution.EXECUTION_ID_KEY)
    
        Future {
    
          // This will run in another thread. Set the execution id so that we can connect these jobs
    
          // with the correct execution.
    
          SQLExecution.withExecutionId(sparkContext, executionId) {
    
            try {
    
              val beforeCollect = System.nanoTime()
    
              // Note that we use .executeCollect() because we don't want to convert data to Scala types
    
              val input: Array[InternalRow] = child.executeCollect()
    
              if (input.length >= 512000000) {
    
                throw new SparkException(
    
                  s"Cannot broadcast the table with more than 512 millions rows: ${input.length} rows")
    
              }
    
              val beforeBuild = System.nanoTime()
    
              longMetric("collectTime") += (beforeBuild - beforeCollect) / 1000000
    
              val dataSize = input.map(_.asInstanceOf[UnsafeRow].getSizeInBytes.toLong).sum
    
              longMetric("dataSize") += dataSize
    
              if (dataSize >= (8L << 30)) {
    
                throw new SparkException(
    
                  s"Cannot broadcast the table that is larger than 8GB: ${dataSize >> 30} GB")
    
              }
    
     
    
              // Construct and broadcast the relation.
    
              val relation = mode.transform(input)
    
              val beforeBroadcast = System.nanoTime()
    
              longMetric("buildTime") += (beforeBroadcast - beforeBuild) / 1000000
    
     
    
              val broadcasted = sparkContext.broadcast(relation)
    
              longMetric("broadcastTime") += (System.nanoTime() - beforeBroadcast) / 1000000
    
     
    
              SQLMetrics.postDriverMetricUpdates(sparkContext, executionId, metrics.values.toSeq)
    
              broadcasted

    对一个表broadcast执行过程为首先计算然后collect,然后通过SparkContext broadcast出去,并且执行过程为线程异步执行,超时时间为spark.sql.broadcastTimeout;

  • 相关阅读:
    npm install 错误 | gyp ERR! configure error
    AD中鼠标经过PCB走线或元器不能高亮显示连线的解决办法
    浏览器提示TLS版本过低, 要求升到TLS1.2或TLS1.3的一些问题收录
    Java.报错:The type java.lang.CharSequence cannot be resolved. It is indirectly referenced from required .class files
    Centos.安装Goaccess1.2
    Mongoose多数据库连接及实用样例
    mongodb通过profile来监控数据
    mongodb副本集 statestr状态说明/解释
    mongodb.副本集配置方法(使用keyfile认证部署)
    vsftp安装与配置for Linux
  • 原文地址:https://www.cnblogs.com/barneywill/p/10109434.html
Copyright © 2011-2022 走看看