zoukankan      html  css  js  c++  java
  • 非学习型单层感知机的java实现(日志三)

    要求如下:

        

    Image(16)

           

                所以当神经元输出函数选择在硬极函数的时候,如果想分成上面的四个类型,则必须要2个神经元,其实至于所有的分类问题,n个神经元则可以分成2的n次方类型。

    又前一节所证明出来的关系有:

    Image(17)

         从而算出了所有的权重的值。。

      

    代码实现如下:

       

          第一个类是用来操实际操作的类,真正核心的内容是在PerceptronClassifyNoLearn中。

    package com.cgrj.com;
    
    import java.util.Arrays;
    
    import org.neuroph.core.data.DataSet;
    import org.neuroph.core.data.DataSetRow;
    import org.neuroph.nnet.Perceptron;
    
    public class MyNeturol {
    
        public static void main(String[] args) {
            // TODO Auto-generated method stub
            DataSet trainingSet=new DataSet(2,2);
            trainingSet.addRow(new DataSetRow(new double[]{1,2},new double[]{Double.NaN,Double.NaN}));
            trainingSet.addRow(new DataSetRow(new double[]{1,1},new double[]{Double.NaN,Double.NaN}));
            trainingSet.addRow(new DataSetRow(new double[]{2,0},new double[]{Double.NaN,Double.NaN}));
            trainingSet.addRow(new DataSetRow(new double[]{2,-1},new double[]{Double.NaN,Double.NaN}));
            trainingSet.addRow(new DataSetRow(new double[]{-1,2},new double[]{Double.NaN,Double.NaN}));
            trainingSet.addRow(new DataSetRow(new double[]{-2,1},new double[]{Double.NaN,Double.NaN}));
            trainingSet.addRow(new DataSetRow(new double[]{-1,-1},new double[]{Double.NaN,Double.NaN}));
            trainingSet.addRow(new DataSetRow(new double[]{-2,-2},new double[]{Double.NaN,Double.NaN}));
            
            PerceptronClassifyNoLearn perceptronClassifyNoLearn=new PerceptronClassifyNoLearn(2);
        
            for(DataSetRow row:trainingSet.getRows()){
                perceptronClassifyNoLearn.setInput(row.getInput());
                perceptronClassifyNoLearn.calculate();
                double[] netWorkOutput=perceptronClassifyNoLearn.getOutput();
                System.out.println(Arrays.toString(row.getInput())+"="+Arrays.toString(netWorkOutput));
                
            }
            
            
            
        }
    
    }

         PerceptronClassifyNoLearn规定了输入层和输出层的属性和规则,由于是无法学的,所以其判定规则是依然设定好了的,在此类中。

        

    package com.cgrj.com;
    
    import org.neuroph.core.Layer;
    import org.neuroph.core.NeuralNetwork;
    import org.neuroph.core.Neuron;
    import org.neuroph.nnet.comp.neuron.BiasNeuron;
    import org.neuroph.nnet.comp.neuron.InputNeuron;
    import org.neuroph.util.ConnectionFactory;
    import org.neuroph.util.LayerFactory;
    import org.neuroph.util.NeuralNetworkFactory;
    import org.neuroph.util.NeuralNetworkType;
    import org.neuroph.util.NeuronProperties;
    import org.neuroph.util.TransferFunctionType;
    
    public class PerceptronClassifyNoLearn extends NeuralNetwork {
        
          
            public PerceptronClassifyNoLearn(int inputNeuronsCount){
                this.createNetWork(inputNeuronsCount);
                
            }
    
            private void createNetWork(int inputNeuronsCount) {
                //设置网络感知机
                this.setNetworkType(NeuralNetworkType.PERCEPTRON);
                
                //构建输入神经元,表示输入的刺激
                NeuronProperties inputNeuronProperties=new NeuronProperties();
                inputNeuronProperties.setProperty("neuronType", InputNeuron.class);
                
                //由输入神经元构成的输入层
                Layer inputLayer=LayerFactory.createLayer(inputNeuronsCount,inputNeuronProperties);
                this.addLayer(inputLayer);
                //给输入层增加BiasNeron,表示神经元偏置
                inputLayer.addNeuron(new BiasNeuron());
                
                //构建输出神经元
                NeuronProperties outputNeuronProperties=new NeuronProperties();
                outputNeuronProperties.setProperty("transferFunction", TransferFunctionType.STEP);
                Layer outputLayer=LayerFactory.createLayer(2, outputNeuronProperties);
                this.addLayer(outputLayer);
                
                ConnectionFactory.fullConnect(inputLayer, outputLayer);
                NeuralNetworkFactory.setDefaultIO(this);
                Neuron n=outputLayer.getNeuronAt(0);
                n.getInputConnections()[0].getWeight().setValue(-3);
                n.getInputConnections()[1].getWeight().setValue(-1);
                n.getInputConnections()[2].getWeight().setValue(1);
                
                
                n=outputLayer.getNeuronAt(1);
                n.getInputConnections()[0].getWeight().setValue(1);
                n.getInputConnections()[1].getWeight().setValue(-2);
                n.getInputConnections()[2].getWeight().setValue(0);
                
                               
                
            }
    }

       可以应用于象限的判定,修改上面的代码如下:

               

    Neuron n=outputLayer.getNeuronAt(0);
                n.getInputConnections()[0].getWeight().setValue(0);
                n.getInputConnections()[1].getWeight().setValue(1);
                n.getInputConnections()[2].getWeight().setValue(0);
                
                
                n=outputLayer.getNeuronAt(1);
                n.getInputConnections()[0].getWeight().setValue(1);
                n.getInputConnections()[1].getWeight().setValue(0);
                n.getInputConnections()[2].getWeight().setValue(0);

           则有第一个用来判定位于y的方向,第一个神经元则用来判定位于x轴的方向

         

    switch (Arrays.toString(netWorkOutput)) {
                case "[1.0, 1.0]":
                    str="第一象限";
                    break;
                case "[0.0, 1.0]":
                    str="第四象限";
                    break;
                case "[1.0, 0.0]":
                    str="第二象限";
                    break;
                case "[0.0, 0.0]":
                    str="第三象限";
                    break;
    
                default:
                    break;
                }
                
                System.out.println(Arrays.toString(row.getInput())+"="+Arrays.toString(netWorkOutput)+"---属于"+str);

          这样就会有打印的结果了。。

         运行截图(这里忽略坐标轴的影响,由于输出函数的特殊,所以把0当成负数看):

           

           下一篇,将具体分析每个类和每个方法的含义,及其实现的原理。。。

          

       

  • 相关阅读:
    失眠食療
    学会妥协学会弯腰(下册)
    软件工程(第4版·修订版)
    GitHub入门与实践
    iOS开发:从零基础到精通
    Premiere Pro CS6高手成长之路
    网页设计与前端开发从入门到精通Dreamweaver+Flash+Photoshop+HTML+CSS+JavaScript
    CINEMA 4D R17 完全学习手册(第2版)
    1040. 二叉树层次遍历
    1041. 二哥打飞机
  • 原文地址:https://www.cnblogs.com/beigongfengchen/p/5462020.html
Copyright © 2011-2022 走看看