zoukankan      html  css  js  c++  java
  • 上下界网络流

    上下界网络流,顾名思义,就是每条边容量有上下界的网络流问题。针对这种较高级别的网络流大致分为以下几个问题:

    无源汇上下界可行流

    由于没有固定的源点和汇点,也不存在什么最大/小流之说了。存在可行流的条件是所有点均满足流量平衡性质。流量平衡指的是,对于每个点入流量=出流量。

    如果每条边只有上界,没有下界,那只要让每条边的流量均为0,一定存在满足条件的流,如果有些边有下界,那就不一定存在满足条件的流了。

    怎么判断一张网络是否存在可行流?

    首先我们假设每条边流量均为它的下界。那么此时问题就转化为了一个只有上界的网络流问题(即普通网络流问题)。但是这么做有一个问题:下界不满足流量平衡。

    我们考虑利用剩余的流量去调整以满足流量平衡。具体来说,如果某个点x的入流大于出流,我们建立一个超级源S',建立一条$S' ightarrow x$相应容量的边;反之,如果某个点y的入流小于出流,我们建立一个超级汇T',建立一条$y ightarrow T'$相应容量的边。

    例如:

    此时我们在新图上跑$S' ightarrow T'$的最大流。由于最大流保证了除源点汇点外其余点均满足流量平衡,故新图中除了S',T'其余点均满足流量平衡,那么去掉S'和T'所连的边,再加上原先的下界流量,如果满流则说明满足流量平衡,原图必然存在可行流;否则不存在。

    模板

    怎么判断一张有源汇网络是否存在可行流?

    考虑将其转化为无源汇的问题。

    将T向S连一条容量上界为inf,下界为0的边,那么如果$T ightarrow S$这条边有流量流过,说明原图是存在可行流的。 

    有源汇上下界最大流

    首先按照上述方法判断出无解情况。

    针对有解情况,显然当前方案是可行的,但不一定最优。我们将上面所述的新图删去S',T'以及它们所连的边,形成一个流量不平衡的图(但是这没关系,因为它和原图合并后是满足流量平衡的)。我们在这张图中继续增广(增广的过程保证是平衡的),即再跑一遍最大流,得到的就是答案。

    注意:第二遍的答案就是最终的答案,不用加上第一遍最大流的答案,因为第一遍搜索出来的边T到S的流量可能是存在的,而第二遍搜索的时候会把这些流弹回去(反向边的存在),已经包含第一遍的流值了。

    模板 

    有源汇上下界最小流

    由于流量有下界,因此是存在非零最小流的。

    同样按照上述方法判断出无解情况。

    注意由于要求流量最小,按照最大流那样直接增广是不行的。(感性理解:直接跑求的是最大流,而我要求最小流,显然文不对题。)

    例如:

    增广后的流为200,但是原图中的最小流为100,这是因为我们没有运用循环流,也就是$2 ightarrow 1$这条边。由于我们求的是最小流,所以事实上我们想尽可能多走一些边。

    我们先不加从T到S的边,直接增广,如下图:

    然后再加那条边(注意原先边的流量还是要保存着的),再增广一次,此时边(T,S)的剩余流量就是原图的最小流。(感性理解:先跑一次最大流把流量尽可能跑完,剩下的流量就是最小流。)

    模板

  • 相关阅读:
    vue 路由
    CSS篇-dispaly、position、定位机制、布局、盒子模型、BFC
    CSS篇-样式表、选择器、权重、伪类
    vue-cli3.0 开发环境构建
    Vue 全家桶学习资源(转)
    vue全家桶常用命名
    服务拆分
    分布式事务及其解决方法
    java mvc 及其缓存
    java 面试经典题
  • 原文地址:https://www.cnblogs.com/bestFy/p/9310825.html
Copyright © 2011-2022 走看看