zoukankan      html  css  js  c++  java
  • 排列组合相关算法 python

    获取指定长度得全部序列

    通过事件来表述这个序列,即n重伯努利实验(二项分布)的全部可能结果。比如时间a表示为: a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 假设每次实验为从a中选择一个数字。那么进行n次实验,获得全部可能得序列。

    比方,进行两次实验, n=2, 那么可能得结果有100个。这里由于每次实验都是相对独立的,所以每次实验的结果可能出现反复,也就是说在获得全部可能的序列中,能够存在反复得值。

    递归实现,DFS(深度优先遍历)

    def gen_all_sequence_dfs(outcomes, length):
        """
        generate all sequence by dfs
    
        outcomes: all the possible event, a list
        length: how many times does the sequence repeat, sequence length
        """
    
        res = []
        seq = []
        dfs_sequence(outcomes, length, seq, res)
    
        return res
    
    def dfs_sequence(outcomes, length, seq, res):
        """
        deep first search
        """
        if 0 == length:
            res.append(tuple(seq[:]))
            return
    
        for key in outcomes:
            seq.append(key)
            dfs_sequence(outcomes, length - 1, seq, res)
            seq.pop()
    
    def run_dfs_example1():
        """
        Example of all sequences
        """
        print 'dfs gen all sequence'
        outcomes = set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
    
        length = 2
        seq_outcomes = gen_all_sequence_dfs(outcomes, length)
        print "Computed", len(seq_outcomes), "sequences of", str(length), "outcomes"
        print "Sequences were", seq_outcomes
    
    run_dfs_example1()

    执行输出结果:

    dfs gen all sequence
    Computed 100 sequences of 2 outcomes
    Sequences were [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (4, 7), (4, 8), (4, 9), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (5, 7), (5, 8), (5, 9), (6, 0), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 7), (6, 8), (6, 9), (7, 0), (7, 1), (7, 2), (7, 3), (7, 4), (7, 5), (7, 6), (7, 7), (7, 8), (7, 9), (8, 0), (8, 1), (8, 2), (8, 3), (8, 4), (8, 5), (8, 6), (8, 7), (8, 8), (8, 9), (9, 0), (9, 1), (9, 2), (9, 3), (9, 4), (9, 5), (9, 6), (9, 7), (9, 8), (9, 9)]

    非递归实现

    利用动态规划的原理(这里我也不太熟悉是不是动态规划,暂且这么叫。假设有错误,请大家帮忙更正),动态的计算第k次实验后获得得全部得序列。

    依据第k-1次实验的全部得序列得结果,然后把每一次结果拿出来计算这一次结果再加上一次实验(即第k次实验)能够获得的结果。

    def gen_all_sequences(outcomes, length):
        """
        Iterative function that enumerates the set of all sequences of
        outcomes of given length
    
        Permutation allow repeat
        """
    
        ans = set([()])
        for dummy_idx in range(length):
            temp = set()
            for seq in ans:
                for item in outcomes:
                    new_seq = list(seq)
                    new_seq.append(item)
                    temp.add(tuple(new_seq))
            ans = temp
        return ans
    
    # example for digits
    def run_example1():
        """
        Example of all sequences
        """
        print 'gen all sequence'
        outcomes = set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
        #outcomes = set(["Red", "Green", "Blue"])
        #outcomes = set(["Sunday", "Mondy", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"])
    
        length = 2
        seq_outcomes = gen_all_sequences(outcomes, length)
        print "Computed", len(seq_outcomes), "sequences of", str(length), "outcomes"
        print "Sequences were", seq_outcomes
    
    
    print '#############################################'
    run_example1()

    代码执行结果:

    gen all sequence
    Computed 100 sequences of 2 outcomes
    Sequences were set([(7, 3), (6, 9), (0, 7), (1, 6), (3, 7), (2, 5), (8, 5), (5, 8), (4, 0), (9, 0), (6, 7), (5, 5), (7, 6), (0, 4), (1, 1), (3, 2), (2, 6), (8, 2), (4, 5), (9, 3), (6, 0), (7, 5), (0, 1), (3, 1), (9, 9), (7, 8), (2, 1), (8, 9), (9, 4), (5, 1), (7, 2), (1, 5), (3, 6), (2, 2), (8, 6), (4, 1), (9, 7), (6, 4), (5, 4), (7, 1), (0, 5), (1, 0), (0, 8), (3, 5), (2, 7), (8, 3), (4, 6), (9, 2), (6, 1), (5, 7), (7, 4), (0, 2), (1, 3), (4, 8), (3, 0), (2, 8), (9, 8), (8, 0), (6, 2), (5, 0), (1, 4), (3, 9), (2, 3), (1, 9), (8, 7), (4, 2), (9, 6), (6, 5), (5, 3), (7, 0), (6, 8), (0, 6), (1, 7), (0, 9), (3, 4), (2, 4), (8, 4), (5, 9), (4, 7), (9, 1), (6, 6), (5, 6), (7, 7), (0, 3), (1, 2), (4, 9), (3, 3), (2, 9), (8, 1), (4, 4), (6, 3), (0, 0), (7, 9), (3, 8), (2, 0), (1, 8), (8, 8), (4, 3), (9, 5), (5, 2)])
    

    Permutation 获取全部排列

    给定一个序列。比如上面给出得 a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 假设依照上面获取序列的算法,那么每次实验都作为独立得实现,序列中能够出现反复实验结果。

    可是再获取排列的时候则不能依照n重伯努利实验得思想进行了。获取排列不同意有反复得结果,即一个元素仅仅能被选择一次。可是在排列中是存在元素得顺序因素得。也就是说相同得两个元素,不同得顺序为不同得排列。

    非递归实现

    在上面非递归算法得基础上。添加一个推断。推断该元素是否已经选择过就能够实现排列得获取。

    def gen_permutations(outcomes, length):
        """
        Iterative function that enumerates the set of all sequences of
        outcomes of given length
        Permutation not allow repeat
        """
    
        ans = set([()])
        for dummy_idx in range(length):
            temp = set()
            for seq in ans:
                for item in outcomes:
                    if item in seq:
                        continue
                    new_seq = list(seq)
                    new_seq.append(item)
                    temp.add(tuple(new_seq))
            ans = temp
        return ans
    
    # example for digits
    def run_example1():
        """
        Example of all sequences
        """
        outcomes = set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
        #outcomes = set(["Red", "Green", "Blue"])
        #outcomes = set(["Sunday", "Mondy", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"])
    
        length = 2
        seq_outcomes = gen_permutations(outcomes, length)
        print "Computed", len(seq_outcomes), "sequences of", str(length), "outcomes"
        print "Sequences were", seq_outcomes
    
    run_example1()
    

    代码执行结果:

    Computed 90 sequences of 2 outcomes
    Sequences were set([(7, 3), (6, 9), (0, 7), (1, 6), (3, 7), (2, 5), (8, 5), (5, 8), (4, 0), (9, 0), (6, 7), (7, 6), (0, 4), (3, 2), (2, 6), (8, 2), (4, 5), (9, 3), (6, 0), (7, 5), (0, 1), (3, 1), (7, 8), (2, 1), (8, 9), (9, 4), (5, 1), (7, 2), (1, 5), (3, 6), (8, 6), (4, 1), (9, 7), (6, 4), (5, 4), (7, 1), (0, 5), (1, 0), (0, 8), (3, 5), (2, 7), (8, 3), (4, 6), (9, 2), (6, 1), (5, 7), (7, 4), (0, 2), (1, 3), (4, 8), (3, 0), (2, 8), (9, 8), (8, 0), (6, 2), (5, 0), (1, 4), (3, 9), (2, 3), (1, 9), (8, 7), (4, 2), (9, 6), (6, 5), (5, 3), (7, 0), (6, 8), (0, 6), (1, 7), (0, 9), (3, 4), (2, 4), (8, 4), (5, 9), (4, 7), (9, 1), (5, 6), (0, 3), (1, 2), (4, 9), (2, 9), (8, 1), (6, 3), (7, 9), (3, 8), (2, 0), (1, 8), (4, 3), (9, 5), (5, 2)])
    

    递归实现

    def gen_permutations_dfs(outcomes, length):
        """
        Iterative function that enumerates the set of all sequences of
        outcomes of given length
        Permutation not allow repeat, DFS
        """
    
        res = []
        seq = []
        dfs_permutation(outcomes, length, seq, res)
    
        return res
    
    def dfs_permutation(outcomes, length, seq, res):
        """
        deep first search
        """
    
        if 0 == length:
            res.append(tuple(seq[:]))
            return
    
        for key in outcomes:
            if key in seq:
                continue
            seq.append(key)
            dfs_permutation(outcomes, length - 1, seq, res)
            seq.pop()
    
    # example for digits
    def run_example2():
        """
        Example of all sequences
        """
        outcomes = set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
        #outcomes = set(["Red", "Green", "Blue"])
        #outcomes = set(["Sunday", "Mondy", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"])
    
        length = 2
        seq_outcomes = gen_permutations_dfs(outcomes, length)
        print "Computed", len(seq_outcomes), "sequences of", str(length), "outcomes"
        print "Sequences were", seq_outcomes
    
    run_example2()

    执行结果:

    Computed 90 sequences of 2 outcomes
    Sequences were [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (1, 0), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (2, 0), (2, 1), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (3, 0), (3, 1), (3, 2), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (4, 0), (4, 1), (4, 2), (4, 3), (4, 5), (4, 6), (4, 7), (4, 8), (4, 9), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4), (5, 6), (5, 7), (5, 8), (5, 9), (6, 0), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 7), (6, 8), (6, 9), (7, 0), (7, 1), (7, 2), (7, 3), (7, 4), (7, 5), (7, 6), (7, 8), (7, 9), (8, 0), (8, 1), (8, 2), (8, 3), (8, 4), (8, 5), (8, 6), (8, 7), (8, 9), (9, 0), (9, 1), (9, 2), (9, 3), (9, 4), (9, 5), (9, 6), (9, 7), (9, 8)]
    

    组合

    组合与排列最大得差别是组合不关心顺序。所以组合得数量要比排列少。
    ,组合能够表示为

    cmn
    。从n个元素中选择m个元素。而且不关心顺序。
    组合能够简单得在排列得结果得基础上去除不考虑顺序得情况下反复得结果就可以获得。
    组合的计算公式:
    cmn=n!m!(nm)!

    非递归实现

    def gen_combination(outcomes, length):
        """
        Iterative function that enumerates the set of all sequences of
        outcomes of given length
        Permutation not allow repeat
        """
    
        ans = set([()])
        for dummy_idx in range(length):
            temp = set()
            for seq in ans:
                for item in outcomes:
                    if item in seq:
                        continue
                    new_seq = list(seq)
                    new_seq.append(item)
                    temp.add(tuple(sorted(new_seq)))
            ans = temp
        return ans
    
    
    def run_example():
        """
        Examples of sorted sequences of outcomes
        """
        # example for digits
        outcomes = set([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
        #outcomes = set(["Red", "Green", "Blue"])
        #outcomes = set(["Sunday", "Mondy", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"])
    
        length = 2
        seq_outcomes = gen_combination(outcomes, length)
        print "Computed", len(seq_outcomes), "sorted sequences of", str(length) ,"outcomes"
        print "Sequences were", seq_outcomes
    
    run_example()

    执行结果:

    Computed 45 sorted sequences of 2 outcomes
    Sequences were set([(5, 9), (6, 9), (1, 3), (4, 8), (5, 6), (2, 8), (4, 7), (0, 7), (4, 6), (8, 9), (1, 6), (3, 7), (2, 5), (0, 3), (5, 8), (1, 2), (6, 7), (2, 9), (1, 5), (3, 6), (0, 4), (3, 5), (2, 7), (2, 6), (4, 5), (1, 4), (3, 9), (2, 3), (1, 9), (4, 9), (0, 8), (7, 9), (0, 1), (6, 8), (3, 4), (5, 7), (2, 4), (3, 8), (0, 6), (1, 8), (1, 7), (0, 9), (0, 5), (7, 8), (0, 2)])
    

    组合的递归实现

    def gen_combination_dfs(outcomes, length):
        """
        Iterative function that enumerates the set of all sequences of
        outcomes of given length
        Permutation not allow repeat, DFS
        """
    
        res = []
        seq = []
        idx = 0
        dfs_combination(outcomes, length, idx, seq, res)
    
        return res
    
    def dfs_combination(outcomes, length, idx, seq, res):
        """
        deep first search
        """
        if idx + length > len(outcomes):
            return
    
        if 0 == length:
            res.append(tuple(seq[:]))
            return
    
        for i in range(idx, len(outcomes) - length + 1):
            seq.append(outcomes[i])
            dfs_combination(outcomes, length - 1, i + 1, seq, res)
            seq.pop()
    
    def run_example2():
        """
        Examples of sorted sequences of outcomes
        """
        # example for digits
        print "dfs combination"
        outcomes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
        #outcomes = set(["Red", "Green", "Blue"])
        #outcomes = set(["Sunday", "Mondy", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"])
    
        length = 2
        seq_outcomes = gen_combination_dfs(outcomes, length)
        print "Computed", len(seq_outcomes), "sorted sequences of", str(length) ,"outcomes"
        print "Sequences were", seq_outcomes
    
    run_example2()

    执行结果:

    Computed 45 sorted sequences of 2 outcomes
    Sequences were [(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 9), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9), (2, 3), (2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (2, 9), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (3, 9), (4, 5), (4, 6), (4, 7), (4, 8), (4, 9), (5, 6), (5, 7), (5, 8), (5, 9), (6, 7), (6, 8), (6, 9), (7, 8), (7, 9), (8, 9)]
  • 相关阅读:
    笔记44 Hibernate快速入门(一)
    tomcat 启用https协议
    笔记43 Spring Security简介
    笔记43 Spring Web Flow——订购披萨应用详解
    笔记42 Spring Web Flow——Demo(2)
    笔记41 Spring Web Flow——Demo
    Perfect Squares
    Factorial Trailing Zeroes
    Excel Sheet Column Title
    Excel Sheet Column Number
  • 原文地址:https://www.cnblogs.com/bhlsheji/p/5080156.html
Copyright © 2011-2022 走看看