zoukankan      html  css  js  c++  java
  • CSU1659: Graph Center(最短路)

    Description

    The center of a graph is the set of all vertices of minimum eccentricity, that is, the set of all vertices A where the greatest distance d(A,B) to other vertices B is minimal. Equivalently, it is the set of vertices with eccentricity equal to the graph's radius. Thus vertices in the center (central points) minimize the maximal distance from other points in the graph.
                                                                                                                 ------wikipedia
    Now you are given a graph, tell me the vertices which are the graph center.

    Input

    There are multiple test cases.
    The first line will contain a positive integer T (T ≤ 300) meaning the number of test cases.
    For each test case, the first line contains the number of vertices N (3 ≤ N ≤ 100) and the number of edges M (N - 1 ≤ N * (N - 1) / 2). Each of the following N lines contains two vertices x (1 ≤ x ≤ N) and y (1 ≤ y ≤ N), meaning there is an edge between x and y. 

    Output

    The first line show contain the number of vertices which are the graph center. Then the next line should list them by increasing order, and every two adjacent number should be separated by a single space.

    Sample Input

    2
    4 3
    1 3
    1 2
    2 4
    5 5
    1 4
    1 3
    2 4
    2 3
    4 5
    

    Sample Output

    2
    1 2
    3
    1 2 4
    

    HINT

    Source


    题意:
    给出n个点。m条边,求每一个点到其它点的距离,取最大的,然后在这全部最大的距离中选一个最小的值,最后输出这个值下有哪些点符合条件


    思路:
    n次最短路找出全部答案

    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    #include <string>
    #include <stack>
    #include <queue>
    #include <map>
    #include <set>
    #include <vector>
    #include <math.h>
    #include <bitset>
    #include <list>
    #include <algorithm>
    #include <climits>
    using namespace std;
    
    #define lson 2*i
    #define rson 2*i+1
    #define LS l,mid,lson
    #define RS mid+1,r,rson
    #define UP(i,x,y) for(i=x;i<=y;i++)
    #define DOWN(i,x,y) for(i=x;i>=y;i--)
    #define MEM(a,x) memset(a,x,sizeof(a))
    #define W(a) while(a)
    #define gcd(a,b) __gcd(a,b)
    #define LL long long
    #define N 200005
    #define INF 0x3f3f3f3f
    #define EXP 1e-8
    #define lowbit(x) (x&-x)
    const int mod = 1e9+7;
    const int L = 10005;
    struct Edges
    {
        int x,y,w,next;
    } e[L<<2];
    
    int head[L],n,m;
    int dis[L];
    int vis[L];
    int cnt[L],hash[L],ss[L];
    int s[L];
    void init()
    {
        memset(e,-1,sizeof(e));
        memset(head,-1,sizeof(head));
    }
    void AddEdge(int x,int y,int w,int k)
    {
        e[k].x = x,e[k].y = y,e[k].w = w,e[k].next = head[x],head[x] = k;
    }
    int relax(int u,int v,int c)
    {
        if(dis[v]>dis[u]+c)
        {
            dis[v] = dis[u]+c;
            return 1;
        }
        return 0;
    }
    
    int SPFA(int src)
    {
        int i;
        memset(vis,0,sizeof(vis));
        for(int i = 0; i<=n; i++)
            dis[i] = INF;
        dis[src] = 0;
        queue<int> Q;
        Q.push(src);
        vis[src] = 1;
        while(!Q.empty())
        {
            int u,v;
            u = Q.front();
            Q.pop();
            vis[u] = 0;
            for(i = head[u]; i!=-1; i=e[i].next)
            {
                v = e[i].y;
                if(relax(u,v,e[i].w)==1 && !vis[v])
                {
                    Q.push(v);
                    vis[v] = 1;
                }
            }
        }
        int maxn = -1;
        for(i = 1; i<=n; i++)
            maxn = max(maxn,dis[i]);
        return maxn;
    }
    
    int ans[L],tot,p[N];
    int main()
    {
        int t,u,v,i,j,k;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d%d",&n,&m);
            init();
            for(i = 0; i<2*m; i+=2)
            {
                scanf("%d%d",&u,&v);
                AddEdge(u,v,1,i);
                AddEdge(v,u,1,i+1);
            }
            int minn = INF;
            for(i = 1; i<=n; i++)
            {
                p[i] = SPFA(i);
                minn = min(p[i],minn);
            }
            tot = 0;
            for(i = 1; i<=n; i++)
            {
                if(p[i]==minn)
                    ans[tot++] = i;
            }
            printf("%d
    ",tot);
            for(i = 0; i<tot; i++)
            {
                if(i)
                    printf(" ");
                printf("%d",ans[i]);
            }
            printf("
    ");
        }
    
        return 0;
    }
    


  • 相关阅读:
    FCM模糊c均值聚类
    Iris数据集免费下载
    matlab 信息增益函数 入侵检测kudcupp
    KNN分类算法的实现
    Git远程仓库地址变更本地如何修改
    浅析 UART、RS232、TTL 之间的关系(转)
    编译某一个ko模块make modules SUBDIRS=drivers/xxx/
    Linux系统调用之SYSCALL_DEFINE(转)
    【TCP/IP详解】TCP保活机制(转)
    linux cpu、内存、IO、网络的测试工具(转)
  • 原文地址:https://www.cnblogs.com/bhlsheji/p/5323798.html
Copyright © 2011-2022 走看看